5 research outputs found

    POSITION TRACKING CONTROL OF DC MOTOR FOR FRONT WHEEL SYSTEMS VIA HILS SIMULATION METHOD

    Get PDF
    This paper present about position tracking control of DC motor to be used as the actuator controller for the front wheel test rig system. The controller strategy that was developed is based on Proportional-Integral-Derivative (PID) controller. It consists of one single closed control loops namely position tracking control loop.  To evaluate the effectiveness of the proposed controller, simulation and experimental studies were performed by using various input demand such as saw tooth, sine and step functions in 5°, 10°, 15° and 20° with the present of steering ratio at 360:20. The results, it is found that the trend between simulation and experimental data are similar with the command position with acceptable level of error which less than 10% for application at hand

    Model-free based control of a HIV/AIDS prevention model

    Get PDF
    Controlling an epidemiological model is often performed using optimal control theory techniques for which the solution depends on the equations of the controlled system, objective functional and possible state and/or control constraints. In this paper, we propose a model-free control approach based on an algorithm that operates in 'real-time' and drives the state solution according to a direct feedback on the state solution that is aimed to be minimized, and without knowing explicitly the equations of the controlled system. We consider a concrete epidemic problem of minimizing the number of HIV infected individuals, through the preventive measure pre-exposure prophylaxis (PrEP) given to susceptible individuals. The solutions must satisfy control and mixed state-control constraints that represent the limitations on PrEP implementation. Our model-free based control algorithm allows to close the loop between the number of infected individuals with HIV and the supply of PrEP medication 'in real time', in such a manner that the number of infected individuals is asymptotically reduced and the number of individuals under PrEP medication remains below a fixed constant value. We prove the efficiency of our approach and compare the model-free control solutions with the ones obtained using a classical optimal control approach via Pontryagin maximum principle. The performed numerical simulations allow us to conclude that the model-free based control strategy highlights new and interesting performances compared with the classical optimal control approach.publishe

    Model Free iPID Control for Glycemia Regulation of Type-1 Diabetes

    No full text
    International audienceThe objective is to design a fully automated glycemia regulation of Type-1 Diabetes (T1D) in both fasting and postprandial phases on a large number of virtual patients. A model-free intelligent PID (iPID) is used to infuse insulin. The feasibility is tested in silico on two simulators with and without measurement noise. The first simulator is derived from a long-term linear time-invariant model. The controller is also validated on the UVa/Padova metabolic simulator on 10 adults under 25 runs/subject for noise robustness test. It is shown that without measurement noise, iPID mimicked the normal pancreatic secretion: a fast rate occurs immediately after meals; it becomes moderate when glycemia decays and reduces to a steady basal mode during fasting. With the UVa/Padova simulator, the robustness against CGM noise and delays was tested. A higher percentage of time in target was obtained with iPID as compared to standard PID with reduced time spent in hyperglycemia.Two different T1D simulators tests showed that iPID detects meals and reacts faster to meal perturbations as compared to a classic PID. The intelligent part turns the controller to be more aggressive immediately after meals without neglecting safety. Thus, postprandial hyperglycemia is reduced with less late postprandial hypoglycemia. The simple structure iPID is a step for PID like controllers since it combines the classic PID nice properties with new adaptive features
    corecore