67,617 research outputs found

    Benefits of Location-Based Access Control:A Literature Study

    Get PDF
    Location-based access control (LBAC) has been suggested as a means to improve IT security. By 'grounding' users and systems to a particular location, \ud attackers supposedly have more difficulty in compromising a system. However, the motivation behind LBAC and its potential benefits have not been investigated thoroughly. To this end, we perform a structured literature review, and examine the goals that LBAC can potentially fulfill, \ud the specific LBAC systems that realize these goals and the context on which LBAC depends. Our paper has four main contributions:\ud first we propose a theoretical framework for LBAC evaluation, based on goals, systems and context. Second, we formulate and apply criteria for evaluating the usefulness of an LBAC system. Third, we identify four usage scenarios for LBAC: open areas and systems, hospitals, enterprises, and finally data centers and military facilities. Fourth, we propose directions for future research:\ud (i) assessing the tradeoffs between location-based, physical and logical access control, (ii) improving the transparency of LBAC decision making, and \ud (iii) formulating design criteria for facilities and working environments for optimal LBAC usage

    Is my configuration any good: checking usability in an interactive sensor-based activity monitor

    Get PDF
    We investigate formal analysis of two aspects of usability in a deployed interactive, configurable and context-aware system: an event-driven, sensor-based homecare activity monitor system. The system was not designed from formal requirements or specification: we model the system as it is in the context of an agile development process. Our aim was to determine if formal modelling and analysis can contribute to improving usability, and if so, which style of modelling is most suitable. The purpose of the analysis is to inform configurers about how to interact with the system, so the system is more usable for participants, and to guide future developments. We consider redundancies in configuration rules defined by carers and participants and the interaction modality of the output messages.Two approaches to modelling are considered: a deep embedding in which devices, sensors and rules are represented explicitly by data structures in the modelling language and non-determinism is employed to model all possible device and sensor states, and a shallow embedding in which the rules and device and sensor states are represented directly in propositional logic. The former requires a conventional machine and a model-checker for analysis, whereas the latter is implemented using a SAT solver directly on the activity monitor hardware. We draw conclusions about the role of formal models and reasoning in deployed systems and the need for clear semantics and ontologies for interaction modalities

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    spChains: A Declarative Framework for Data Stream Processing in Pervasive Applications

    Get PDF
    Pervasive applications rely on increasingly complex streams of sensor data continuously captured from the physical world. Such data is crucial to enable applications to ``understand'' the current context and to infer the right actions to perform, be they fully automatic or involving some user decisions. However, the continuous nature of such streams, the relatively high throughput at which data is generated and the number of sensors usually deployed in the environment, make direct data handling practically unfeasible. Data not only needs to be cleaned, but it must also be filtered and aggregated to relieve higher level algorithms from near real-time handling of such massive data flows. We propose here a stream-processing framework (spChains), based upon state-of-the-art stream processing engines, which enables declarative and modular composition of stream processing chains built atop of a set of extensible stream processing blocks. While stream processing blocks are delivered as a standard, yet extensible, library of application-independent processing elements, chains can be defined by the pervasive application engineering team. We demonstrate the flexibility and effectiveness of the spChains framework on two real-world applications in the energy management and in the industrial plant management domains, by evaluating them on a prototype implementation based on the Esper stream processo

    Managing contextual information in semantically-driven temporal information systems

    Get PDF
    Context-aware (CA) systems have demonstrated the provision of a robust solution for personalized information delivery in the current content-rich and dynamic information age we live in. They allow software agents to autonomously interact with users by modeling the user’s environment (e.g. profile, location, relevant public information etc.) as dynamically-evolving and interoperable contexts. There is a flurry of research activities in a wide spectrum at context-aware research areas such as managing the user’s profile, context acquisition from external environments, context storage, context representation and interpretation, context service delivery and matching of context attributes to users‘ queries etc. We propose SDCAS, a Semantic-Driven Context Aware System that facilitates public services recommendation to users at temporal location. This paper focuses on information management and service recommendation using semantic technologies, taking into account the challenges of relationship complexity in temporal and contextual information
    corecore