31 research outputs found

    Model Checking Games for the Quantitative mu-Calculus

    Full text link
    We investigate quantitative extensions of modal logic and the modal mu-calculus, and study the question whether the tight connection between logic and games can be lifted from the qualitative logics to their quantitative counterparts. It turns out that, if the quantitative mu-calculus is defined in an appropriate way respecting the duality properties between the logical operators, then its model checking problem can indeed be characterised by a quantitative variant of parity games. However, these quantitative games have quite different properties than their classical counterparts, in particular they are, in general, not positionally determined. The correspondence between the logic and the games goes both ways: the value of a formula on a quantitative transition system coincides with the value of the associated quantitative game, and conversely, the values of quantitative parity games are definable in the quantitative mu-calculus

    Model checking Quantitative Linear Time Logic

    Get PDF
    This paper considers QLtl, a quantitative analagon of Ltl and presents algorithms for model checking QLtl over quantitative versions of Kripke structures and Markov chains

    Discounting in LTL

    Full text link
    In recent years, there is growing need and interest in formalizing and reasoning about the quality of software and hardware systems. As opposed to traditional verification, where one handles the question of whether a system satisfies, or not, a given specification, reasoning about quality addresses the question of \emph{how well} the system satisfies the specification. One direction in this effort is to refine the "eventually" operators of temporal logic to {\em discounting operators}: the satisfaction value of a specification is a value in [0,1][0,1], where the longer it takes to fulfill eventuality requirements, the smaller the satisfaction value is. In this paper we introduce an augmentation by discounting of Linear Temporal Logic (LTL), and study it, as well as its combination with propositional quality operators. We show that one can augment LTL with an arbitrary set of discounting functions, while preserving the decidability of the model-checking problem. Further augmenting the logic with unary propositional quality operators preserves decidability, whereas adding an average-operator makes some problems undecidable. We also discuss the complexity of the problem, as well as various extensions

    Minimizing Expected Cost Under Hard Boolean Constraints, with Applications to Quantitative Synthesis

    Get PDF
    In Boolean synthesis, we are given an LTL specification, and the goal is to construct a transducer that realizes it against an adversarial environment. Often, a specification contains both Boolean requirements that should be satisfied against an adversarial environment, and multi-valued components that refer to the quality of the satisfaction and whose expected cost we would like to minimize with respect to a probabilistic environment. In this work we study, for the first time, mean-payoff games in which the system aims at minimizing the expected cost against a probabilistic environment, while surely satisfying an ω\omega-regular condition against an adversarial environment. We consider the case the ω\omega-regular condition is given as a parity objective or by an LTL formula. We show that in general, optimal strategies need not exist, and moreover, the limit value cannot be approximated by finite-memory strategies. We thus focus on computing the limit-value, and give tight complexity bounds for synthesizing ϵ\epsilon-optimal strategies for both finite-memory and infinite-memory strategies. We show that our game naturally arises in various contexts of synthesis with Boolean and multi-valued objectives. Beyond direct applications, in synthesis with costs and rewards to certain behaviors, it allows us to compute the minimal sensing cost of ω\omega-regular specifications -- a measure of quality in which we look for a transducer that minimizes the expected number of signals that are read from the input

    Linear and Branching System Metrics

    Get PDF
    We extend the classical system relations of trace\ud inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces.\ud \ud Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances, and we provide a full logical characterization of the distances in terms of quantitative versions of LTL and μ-calculus. We show that, while trace inclusion (resp. equivalence) coincides with simulation (resp. bisimulation) for deterministic boolean transition systems, linear\ud and branching distances do not coincide for deterministic metric transition systems. Finally, we provide algorithms for computing the distances over finite systems, together with a matching lower complexity bound
    corecore