7,539 research outputs found

    Policy Optimization with Model-based Explorations

    Full text link
    Model-free reinforcement learning methods such as the Proximal Policy Optimization algorithm (PPO) have successfully applied in complex decision-making problems such as Atari games. However, these methods suffer from high variances and high sample complexity. On the other hand, model-based reinforcement learning methods that learn the transition dynamics are more sample efficient, but they often suffer from the bias of the transition estimation. How to make use of both model-based and model-free learning is a central problem in reinforcement learning. In this paper, we present a new technique to address the trade-off between exploration and exploitation, which regards the difference between model-free and model-based estimations as a measure of exploration value. We apply this new technique to the PPO algorithm and arrive at a new policy optimization method, named Policy Optimization with Model-based Explorations (POME). POME uses two components to predict the actions' target values: a model-free one estimated by Monte-Carlo sampling and a model-based one which learns a transition model and predicts the value of the next state. POME adds the error of these two target estimations as the additional exploration value for each state-action pair, i.e, encourages the algorithm to explore the states with larger target errors which are hard to estimate. We compare POME with PPO on Atari 2600 games, and it shows that POME outperforms PPO on 33 games out of 49 games.Comment: Accepted at AAAI-1

    Learn to Interpret Atari Agents

    Full text link
    Deep Reinforcement Learning (DeepRL) agents surpass human-level performances in a multitude of tasks. However, the direct mapping from states to actions makes it hard to interpret the rationale behind the decision making of agents. In contrast to previous a-posteriori methods of visualizing DeepRL policies, we propose an end-to-end trainable framework based on Rainbow, a representative Deep Q-Network (DQN) agent. Our method automatically learns important regions in the input domain, which enables characterizations of the decision making and interpretations for non-intuitive behaviors. Hence we name it Region Sensitive Rainbow (RS-Rainbow). RS-Rainbow utilizes a simple yet effective mechanism to incorporate visualization ability into the learning model, not only improving model interpretability, but leading to improved performance. Extensive experiments on the challenging platform of Atari 2600 demonstrate the superiority of RS-Rainbow. In particular, our agent achieves state of the art at just 25% of the training frames. Demonstrations and code are available at https://github.com/yz93/Learn-to-Interpret-Atari-Agents

    Feature reinforcement learning: state of the art

    No full text
    Feature reinforcement learning was introduced five years ago as a principled and practical approach to history-based learning. This paper examines the progress since its inception. We now have both model-based and model-free cost functions, most recently extended to the function approximation setting. Our current work is geared towards playing ATARI games using imitation learning, where we use Feature RL as a feature selection method for high-dimensional domains

    IGN : Implicit Generative Networks

    Full text link
    In this work, we build recent advances in distributional reinforcement learning to give a state-of-art distributional variant of the model based on the IQN. We achieve this by using the GAN model's generator and discriminator function with the quantile regression to approximate the full quantile value for the state-action return distribution. We demonstrate improved performance on our baseline dataset - 57 Atari 2600 games in the ALE. Also, we use our algorithm to show the state-of-art training performance of risk-sensitive policies in Atari games with the policy optimization and evaluation

    Verifiable Reinforcement Learning via Policy Extraction

    Full text link
    While deep reinforcement learning has successfully solved many challenging control tasks, its real-world applicability has been limited by the inability to ensure the safety of learned policies. We propose an approach to verifiable reinforcement learning by training decision tree policies, which can represent complex policies (since they are nonparametric), yet can be efficiently verified using existing techniques (since they are highly structured). The challenge is that decision tree policies are difficult to train. We propose VIPER, an algorithm that combines ideas from model compression and imitation learning to learn decision tree policies guided by a DNN policy (called the oracle) and its Q-function, and show that it substantially outperforms two baselines. We use VIPER to (i) learn a provably robust decision tree policy for a variant of Atari Pong with a symbolic state space, (ii) learn a decision tree policy for a toy game based on Pong that provably never loses, and (iii) learn a provably stable decision tree policy for cart-pole. In each case, the decision tree policy achieves performance equal to that of the original DNN policy
    • …
    corecore