93 research outputs found

    Elastography: modality-specific approaches, clinical applications, and research horizons

    Get PDF
    Manual palpation has been used for centuries to provide a relative indication of tissue health and disease. Engineers have sought to make these assessments increasingly quantitative and accessible within daily clinical practice. Since many of the developed techniques involve image-based quantification of tissue deformation in response to an applied force (i.e., "elastography”), such approaches fall squarely within the domain of the radiologist. While commercial elastography analysis software is becoming increasingly available for clinical use, the internal workings of these packages often remain a "black box,” with limited guidance on how to usefully apply the methods toward a meaningful diagnosis. The purpose of the present review article is to introduce some important approaches to elastography that have been developed for the most widely used clinical imaging modalities (e.g., ultrasound, MRI), to provide a basic sense of the underlying physical principles, and to discuss both current and potential (musculoskeletal) applications. The article also seeks to provide a perspective on emerging approaches that are rapidly developing in the research laboratory (e.g., optical coherence tomography, fibered confocal microscopy), and which may eventually gain a clinical foothol

    Identification of the Elastic Modulus of an Organ Model Using Reactive Force and Ultrasound Image

    Get PDF
    制度:新 ; 報告番号:甲3418号 ; 学位の種類:博士(工学) ; 授与年月日:2011/7/28 ; 早大学位記番号:新574

    Non-rigid registration of breast surfaces using the laplace and diffusion equations

    Get PDF
    A semi-automated, non-rigid breast surface registration method is presented that involves solving the Laplace or diffusion equations over undeformed and deformed breast surfaces. The resulting potential energy fields and isocontours are used to establish surface correspondence. This novel surface-based method, which does not require intensity images, anatomical landmarks, or fiducials, is compared to a gold standard of thin-plate spline (TPS) interpolation. Realistic finite element simulations of breast compression and further testing against a tissue-mimicking phantom demonstrate that this method is capable of registering surfaces experiencing 6 - 36 mm compression to within a mean error of 0.5 - 5.7 mm

    PDE-Based Non-rigid Registration of Breast Surfaces

    Get PDF

    Simultaneous estimation of elasticity for multiple deformable bodies: Simultaneous estimation of elasticity for multiple deformable bodies

    Get PDF
    Material property has great importance in deformable body simulation and medical robotics. The elasticity parameters, such as Young’s modulus of the deformable bodies, are important to make realistic animations. Further in medical applications the (recovered) elasticity parameters can assist surgeons to perform better pre-op surgical planning and enable medical robots to carry out personalized surgical procedures. Previous elasticity parameters estimation methods are limited to recover one elasticity parameter of one deformable body at a time. In this paper, we propose a novel elasticity parameter estimation algorithm that can recover the elasticity parameters of multiple deformable bodies or multiple regions of one deformable body simultaneously from (at least two sets of) images. We validate our algorithm with both synthetic test cases and real patient CT images
    corecore