328 research outputs found

    An approach to predict lower-order dynamic behaviors of a 5-DOF hybrid robot using a minimum set of generalized coordinates

    Get PDF
    This paper presents an effective semi-analytical approach for predicting lower-order dynamics of a five degrees-of-freedom (DOF) hybrid robot named TriMule, which is composed of a 3-DOF parallel mechanism plus a 2-DOF A/C wrist. In this method, the governing equations of motion of limbs within the parallel mechanism are first formulated by finite element analysis (FEA) and then reduced to super-element models. This is followed by exploiting a general stiffness model of multiple DOF joints connecting the super-elements. These two threads lead to the reduced dynamic model of the parallel mechanism while keeping the full set of lower-order modes retained. Finally, the dynamic model of entire system is established by merging the models of parallel mechanism and wrist. The computational results show that the lower-order natural frequencies, mode shapes of the entire system, and the frequency response functions (FRFs) of the robot tool center point (TCP) estimated by the proposed approach have very good agreement with those obtained by a full order FE model and experimental modal tests. The merits of this approach lie in that the established model allows the full set of lower-order dynamics of the entire system to be predicted effectively and accurately by only using fourteen generalized coordinates

    Lizard Inspired Tail for Dynamic Stabilization of Robotic Body

    Get PDF
    The purpose of this project was to determine the feasibility of a lizard inspired tail for the dynamic stabilization of robotic bodies during aerial or aggressive maneuvers. A mathematical model was created to determine the effects of various tail designs. A physical model of the tail design was fabricated and used to determine feasibility of the design and evaluate the mathematical model

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    6th International congress of the Serbian society of mechanics: Review

    Get PDF
    Ovaj rad prikazuje najvažnije informacije o 6. kongresu Srpskog društva za mehaniku, koji je održan na Tari od 19. do 21. juna 2017. Kongres je organizovan od strane Srpskog društva za mehaniku. Dat je kratak prikaz najznačajnijih radova predstavljenih na ovom kongresu, a koji se bave teorijskom i primenjenom mehanikom.This paper presents the most important information and describes the activities of the 6th Congress of the Serbian Society of Mechanics which was held on mountain Tara, on 19- 21 June, 2017. The Congress was organized by the Serbian Society of Mechanics. Brief summaries of the plenary lectures and some of 99 accepted papers, which admittedly attracted the most interest were shown as well

    6th International congress of the Serbian society of mechanics: Review

    Get PDF
    Ovaj rad prikazuje najvažnije informacije o 6. kongresu Srpskog društva za mehaniku, koji je održan na Tari od 19. do 21. juna 2017. Kongres je organizovan od strane Srpskog društva za mehaniku. Dat je kratak prikaz najznačajnijih radova predstavljenih na ovom kongresu, a koji se bave teorijskom i primenjenom mehanikom.This paper presents the most important information and describes the activities of the 6th Congress of the Serbian Society of Mechanics which was held on mountain Tara, on 19- 21 June, 2017. The Congress was organized by the Serbian Society of Mechanics. Brief summaries of the plenary lectures and some of 99 accepted papers, which admittedly attracted the most interest were shown as well

    Frequency-Adaptive Bi-Linear Reduced Order Modelling for Structures with Intermittent Contact

    Full text link
    Computing the nonlinear forced response of structures with localized nonlinearity, such as intermittent contacts, is a time intensive task mainly because highly refined finite element models are necessary to properly model such structures. To alleviate this issue, temporal and spatial reduction methods have been proven to be beneficial in making nonlinear analyses faster. In this research, reduced order models for structures with intermittent contacts are presented. Models of systems with intermittent contacts such as jack-up platforms are reduced through the projection of the full system onto a basis of normal modes computed by enforcing special boundary conditions (full contact, partial contact, or fully open) at contact surfaces. The resulting low order models are used to predict the steady state forced response by the harmonic balance method coupled with a pseudo-arc length continuation algorithm. A frequency adaptive reduction (FAR) method is employed to accurately predict the behavior at the contact area during vibration and therefore establish special boundary conditions to be employed in generating the transformation matrix applied in the reduction process. The computation and strategic reduction of the set of basis vectors, at every frequency within the range of interest, provides an efficient optimization of the model size. Furthermore, the continuation approach is adjusted to handle models of varying size between solution frequencies. The proposed method is applied to multiple test cases to demonstrate its effectiveness and high numerical efficiency compared to classical reduction methods. Despite the development of an optimal reduced order modelling tool such as the FAR, repetitive modeling of complex engineering structures in the design process can still be challenging because of the time needed to construct reduced order models. To address this challenge, substructuring can be employed. Analyzing a system’s structural dynamics in such a component-wise fashion has proven to have important advantages over global methods. Such benefits include the ability to evaluate the dynamic behavior of structures that are too large or complex to be analyzed as a single entity. Also, by analyzing the subsystems, local dynamic behavior can be recognized more easily than when the entire system is analyzed. In cases when a single component’s geometry or parameters are modified, only such subcomponent needs to be reanalyzed, therefore the total system can be analyzed at low additional cost. This advantage can be leveraged when dealing with local nonlinearities with intermittent contacts (e.g., cracks). If the length of a local crack within a large structure increases, only such local area needs to be remodeled without remodeling the entire structure completely. Despite their laudable advantages, most substructuring techniques are only capable of handling linear systems. Combining the FAR technique with conventional substructuring methods allow the handling of local nonlinear contact challenges. This idea is explored in detail in this research and the method is tested on a rectangular plate with two independent crack interfaces. Finally, the novel reduction method developed herein is further challenged by its application on systems with friction and rigid body mode. Example of such system, analyzed in this work, is the prediction of the dynamic behavior of an untethered multi-legged microrobot. The proposed model is modified to incorporate rigid body dynamics and friction to predict the dynamics of such intricate system with complex motion. Simulation results are verified using experimental results from the microrobot prototype.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155239/1/doxydoxy_1.pd

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    Path and Motion Planning for Autonomous Mobile 3D Printing

    Get PDF
    Autonomous robotic construction was envisioned as early as the ‘90s, and yet, con- struction sites today look much alike ones half a century ago. Meanwhile, highly automated and efficient fabrication methods like Additive Manufacturing, or 3D Printing, have seen great success in conventional production. However, existing efforts to transfer printing technology to construction applications mainly rely on manufacturing-like machines and fail to utilise the capabilities of modern robotics. This thesis considers using Mobile Manipulator robots to perform large-scale Additive Manufacturing tasks. Comprised of an articulated arm and a mobile base, Mobile Manipulators, are unique in their simultaneous mobility and agility, which enables printing-in-motion, or Mobile 3D Printing. This is a 3D printing modality, where a robot deposits material along larger-than-self trajectories while in motion. Despite profound potential advantages over existing static manufacturing-like large- scale printers, Mobile 3D printing is underexplored. Therefore, this thesis tack- les Mobile 3D printing-specific challenges and proposes path and motion planning methodologies that allow this printing modality to be realised. The work details the development of Task-Consistent Path Planning that solves the problem of find- ing a valid robot-base path needed to print larger-than-self trajectories. A motion planning and control strategy is then proposed, utilising the robot-base paths found to inform an optimisation-based whole-body motion controller. Several Mobile 3D Printing robot prototypes are built throughout this work, and the overall path and motion planning strategy proposed is holistically evaluated in a series of large-scale 3D printing experiments
    corecore