3 research outputs found

    Canonicity of Proofs in Constructive Modal Logic

    Full text link
    In this paper we investigate the Curry-Howard correspondence for constructive modal logic in light of the gap between the proof equivalences enforced by the lambda calculi from the literature and by the recently defined winning strategies for this logic. We define a new lambda-calculus for a minimal constructive modal logic by enriching the calculus from the literature with additional reduction rules and we prove normalization and confluence for our calculus. We then provide a typing system in the style of focused proof systems allowing us to provide a unique proof for each term in normal form, and we use this result to show a one-to-one correspondence between terms in normal form and winning innocent strategies.Comment: Extended version of the TABLEAUX 2023 pape

    Three-valued logics, uncertainty management and rough sets

    Get PDF
    This paper is a survey of the connections between three-valued logics and rough sets from the point of view of incomplete information management. Based on the fact that many three-valued logics can be put under a unique algebraic umbrella, we show how to translate three-valued conjunctions and implications into operations on ill-known sets such as rough sets. We then show that while such translations may provide mathematically elegant algebraic settings for rough sets, the interpretability of these connectives in terms of an original set approximated via an equivalence relation is very limited, thus casting doubts on the practical relevance of truth-functional logical renderings of rough sets

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established
    corecore