29 research outputs found

    Bisimulation in Inquisitive Modal Logic

    Full text link
    Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic, and characterise inquisitive modal logic as the bisimulation invariant fragments of first-order logic over various classes of two-sorted relational structures. These results crucially require non-classical methods in studying bisimulations and first-order expressiveness over non-elementary classes.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    A Characterization Theorem for a Modal Description Logic

    Full text link
    Modal description logics feature modalities that capture dependence of knowledge on parameters such as time, place, or the information state of agents. E.g., the logic S5-ALC combines the standard description logic ALC with an S5-modality that can be understood as an epistemic operator or as representing (undirected) change. This logic embeds into a corresponding modal first-order logic S5-FOL. We prove a modal characterization theorem for this embedding, in analogy to results by van Benthem and Rosen relating ALC to standard first-order logic: We show that S5-ALC with only local roles is, both over finite and over unrestricted models, precisely the bisimulation invariant fragment of S5-FOL, thus giving an exact description of the expressive power of S5-ALC with only local roles

    Graded modal logic and counting bisimulation

    Full text link
    This note sketches the extension of the basic characterisation theorems as the bisimulation-invariant fragment of first-order logic to modal logic with graded modalities and matching adaptation of bisimulation. We focus on showing expressive completeness of graded multi-modal logic for those first-order properties of pointed Kripke structures that are preserved under counting bisimulation equivalence among all or among just all finite pointed Kripke structures

    Recurrent graph neural networks and their connections to bisimulation and logic

    Get PDF
    The success of Graph Neural Networks (GNNs) in practice has motivated extensive research on their theoretical properties. This includes recent results that characterise node classifiers expressible by GNNs in terms of first order logic. Most of the analysis, however, has been focused on GNNs with fixed number of message-passing iterations (i.e., layers), which cannot realise many simple classifiers such as reachability of a node with a given label. In this paper, we start to fill this gap and study the foundations of GNNs that can perform more than a fixed number of message-passing iterations. We first formalise two generalisations of the basic GNNs: recurrent GNNs (RecGNNs), which repeatedly apply message-passing iterations until the node classifications become stable, and graph-size GNNs (GSGNNs), which exploit a built-in function of the input graph size to decide the number of message-passings. We then formally prove that GNN classifiers are strictly less expressive than RecGNN ones, and RecGNN classifiers are strictly less expressive than GSGNN ones. To get this result, we identify novel semantic characterisations of the three formalisms in terms of suitable variants of bisimulation, which we believe have their own value for our understanding of GNNs. Finally, we prove syntactic logical characterisations of RecGNNs and GSGNNs analogous to the logical characterisation of plain GNNs, where we connect the two formalisms to monadic monotone fixpoint logic—a generalisation of first-order logic that supports recursion

    A model category for modal logic

    Full text link
    We define Quillen model structures on a family of presheaf toposes arising from tree unravellings of Kripke models, leading to a homotopy theory for modal logic. Modal preservation theorems and the Hennessy-Milner property are revisited from a homotopical perspective.Comment: 25 page

    Inquisitive bisimulation

    Full text link
    Inquisitive modal logic InqML is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic in the context of relational structures with two sorts, one for worlds and one for information states. We characterise inquisitive modal logic, as well as its multi-agent epistemic S5-like variant, as the bisimulation invariant fragment of first-order logic over various natural classes of two-sorted structures. These results crucially require non-classical methods in studying bisimulation and first-order expressiveness over non-elementary classes of structures, irrespective of whether we aim for characterisations in the sense of classical or of finite model theory

    Weak MSO: Automata and Expressiveness Modulo Bisimilarity

    Full text link
    We prove that the bisimulation-invariant fragment of weak monadic second-order logic (WMSO) is equivalent to the fragment of the modal μ\mu-calculus where the application of the least fixpoint operator μp.φ\mu p.\varphi is restricted to formulas φ\varphi that are continuous in pp. Our proof is automata-theoretic in nature; in particular, we introduce a class of automata characterizing the expressive power of WMSO over tree models of arbitrary branching degree. The transition map of these automata is defined in terms of a logic FOE1∞\mathrm{FOE}_1^\infty that is the extension of first-order logic with a generalized quantifier ∃∞\exists^\infty, where ∃∞x.ϕ\exists^\infty x. \phi means that there are infinitely many objects satisfying ϕ\phi. An important part of our work consists of a model-theoretic analysis of FOE1∞\mathrm{FOE}_1^\infty.Comment: Technical Report, 57 page
    corecore