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Abstract

We provide a detailed analysis of very weak fragments of modal logic. Our
fragments lack connectives that introduce non-determinism and they feature
restrictions on the modal operators, which may lead to substantial reductions
in complexity. Our main result is a general game-based characterization of
the expressive power of our fragments over the class of finite structures.

1 Introduction

The search for computationally well-behaved fragments of languages such as first-
order and second-order logic has a long history. For instance, early in the twentieth
century, Löwenheim already gave a decision procedure for the satisfiability of first-
order sentences with only unary predicates. Some familiar fragments of first-order
logic are defined by means of restrictions of the quantifier prefix of formulas in
prenex normal forms. Finite-variable fragments of first-order logic are yet another
family of fragments whose computational properties have been studied extensively,
with decidability results going back to the early 1960s [18], while the late 1990s
saw detailed complexity analyses of the two-variable fragment [9, 10, 15]. Despite
the fact that the computational properties of prenex normal form and finite vari-
able fragments have been (almost) completely investigated, these fragments leave
something to be desired: their meta-logical properties are often poor, and, in par-
ticular, they usually do not enjoy a decent model theory that helps us to understand
their computational properties. To overcome these drawbacks, there are ongoing
research efforts to identify fragments of first-order logic that manage to combine
good computational behavior with good logical properties.

One such effort takes modal logic as its starting point. Through the standard or
relational translation, modal languages may be viewed as fragments of first-order
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languages [3]. Modal fragments are computationally very well-behaved; their sat-
isfiability and model checking problems are of reasonably low complexity, and
they are so in a robust way [20, 8]. The guarded fragment [1] was introduced as
a generalization of the modal fragment, one that retains the good computational
properties of modal fragments as much as possible. The good computational be-
havior of modal and guarded fragments has been explained in terms of the tree
model property, and generalizations thereof.

In this paper we also search for well-behaved fragments of first-order logic by
considering modal and modal-like languages, but we aim at a more fine-grained
analysis. We start by taking a computationally well-behaved logic that can be
translated into first-order logic, and try to generalize what we believe to be the
main features responsible for the good computational behavior. Instead of modal
logic, however, our starting point is taken from description logic. The description
logic

�����
may be viewed as a restriction of the traditional modal language, where

disjunctions are disallowed and the diamond operator is severely constrained. The
restrictions built into

�����
yield significant reductions in computational complex-

ity.
The aim of the paper is to provide a systematic exploration of the logical as-

pects of the restrictions built into
�����

. We define a family of modal fragments
inspired by

��� �
, briefly survey the computational complexity of their satisfiability

problems, and spend most of the paper on providing a game-based characterization
of their expressive power.

2 Description Logics and �
	��
Description logics have been proposed in knowledge representation to specify sys-
tems in which structured knowledge can be expressed and reasoned with in a prin-
cipled way [2]. They provide a logical basis to the well-known traditions of frame-
based systems, semantic networks and KL-ONE-like languages, and now also for
the semantic web. The main building blocks of languages of description logic are
concepts and roles. The former are interpreted as subsets of a given domain, and
the later as binary relations on the domain. Description logics differ in the con-
structions they admit for building complex concepts and roles.

Our starting point here is the logic
�����

[4]; its language has universal quan-
tification, conjunction and unqualified existential quantification. That is, the legal
concepts are generated by the following rule: ��������������������! �"�$#%�! �& ,
where � is an atomic concept, and � is an atomic role. In traditional modal logic
notation, this production rule would be written as '(�����*)+�%'�,-'+�/. ��01'2��34�657& ,
or as '8������)9�:'!,;'9�=<>'9�:?@& when considering only one role.
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Interpretations for description logics such as
��� �

are pairs
� ���������
	 , where

� is a non-empty set, and � is a mapping that takes concepts to subsets of �
and roles to subsets of ���� . In (uni-)modal notation, a model is a tuple � �
����� ������	 where � is a non-empty set, � is a binary relation on � , and � is a
function assigning subsets of � to proposition letters respectively.

3 Taking a Cue from � 	+�
The logic

��� �
was carefully designed to control two important sources of compu-

tational complexity: non-determinism and deep model exploration. This aim shows
up clearly in the syntactic constraints imposed on the language. The elimination of
negation and disjunction deals with non-determinism (partial information cannot
be expressed), while the restriction to unqualified existential quantification reduces
model exploration to the bare minimum. As we will see in detail in Section 4,
these design decisions have a significant impact on the computational complex-
ity, making satisfiability checking trivial and subsumption checking polynomially
tractable.

In contrast, standard modal logics (allowing full Boolean expressivity and qual-
ified existential quantification) have PSPACE-complete satisfiability problems, as
they allow for the coding up of models that are exponential in the size of the input
formula [3]. The fact that restrictions on modal operators (the modal counterparts
of description logic’s quantifiers) produce computationally well behaved languages
has also been studied in the modal logic community. Specifically, bounding the
depth of nesting of modal operators may bring the complexity of the satisfiabil-
ity problem down in dramatic ways, especially if one restricts the language even
further by allowing only finitely many proposition letters (see [11]).

Despite the considerable computational impact of restricting non-determinism
and existential quantification, a thorough analysis of its logical aspects, and espe-
cially of the expressive power, has been missing so far. The following definitions
allow us to capture not just

�����
but also a wide variety of additional fragments.

In it we take the Boolean restrictions as they occur in
��� �

mostly for granted (but
we do include & , � ), and focus instead on its modal restrictions in a systematic
way.

First, as we saw above, description and modal languages encode two kinds of
information: local information depending only on the current node of evaluation,
and non-local or relational information requiring model exploration (in controlled
ways).

Definition 1 (Local Formulas) A formula ' is a local formula if it is in the set of
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formulas LF generated by: ';����� & � � � )9�:'!,;' �:? & , where ) is a proposition
letter.

Second, we generalize the notion of unqualified existential quantification, by al-
lowing complete control on which quantifiers are permitted at each level of nesting.

Definition 2 (Fragment of
� �

modulo � ) Let � be either � or an initial seg-
ment ��� �    ���
	 of � . Let � ������ ? � < � ? <�	 . The fragment of

� �
modulo �

(notation:
� ���

) is defined inductively as

� � �� � LF (the set of local formulas)
� � ������ � the closure under taking conjunctions of � LF

� � ?@'9�:'�� � � �� and � ������� 	 � ? 	 �
� � < ' � '!� � � �� and � ������� 	 � <"	 �
� � ?@' � <>' � '#� � � �� and � ���$�%� 	 ��? <"	 	  

The language
� � �

is defined as
� � � �'& ��(*) � � �� .

A few comments are in order. First, the definition of our
� � �

-fragments depends
on the choice of LF, the set of local formulas; in Section 7 we will vary this set.

Second, the function � used in the definition allows us to precisely control the
legal arguments of the modalities at each node of the construction tree of formulas
in
� � �

. In this manner we are able to cut up the full modal language in novel
ways. However, the present definition does not yet allow us to define all of the
standard modal language

� �
; see Section 7 for more on this.

Third, let �,+8���'�-� ? � < � ? <.	 be such that � ��� 	 ��< for all � . Obviously, if
we were to allow & and � in

��� �
, we would have

� � �*/ � ����� . Our definition
captures

��� �
in a very natural matter: the function �0+ dictates that the modal box

(and only the modal box) can have arguments of arbitrary complexity.

4 Computational Aspects

In this section we provide a brief overview of the computational aspects of our� � �
-fragments. First of all, recall that the satisfiability problem for the standard

modal logic K is PSPACE-complete. By going down to
��� �

, that is, by disal-
lowing disjunction (as well as negation, & and � ) and by restricting ourselves to
unqualified existential quantification, the satisfiability problem becomes trivial as
all formulas in

�����
are satisfiable. More interesting is the fact that deciding sub-

sumption (given two formulas ' �213� ����� decide whether '4�-1 is a theorem)
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is solvable in polynomial time [5]. We refer the reader to [7] for further discussion
on the computational aspects of

�����
and its extensions.

In [11], Halpern shows that finiteness restrictions (both on the number of pro-
positional symbols and on the nesting of operators) also lowers the complexity of
the inference tasks. Satisfiability of the basic modal logic K becomes NP-complete
when we only allow finite nesting of modalities, and it drops to linear time when we
furthermore restrict the language to only a finite number of propositional symbols.

These results can immediately be extended to the appropriate
� � �

fragments.
For example, the results for

�����
directly implies similar results for the frag-

ment
� � �*/

defined above. The following two results are more general, but also
straightforward.

Theorem 3 Let �*� � � � ? � < � ? <.	 , where � is an initial segment or � � � .
The problem of deciding whether a formula in

� � �
is satisfiable is in co-NP.

Proof. For each
� � �

-fragment, we can reduce its satisfiability problem to the sat-
isfiability problem for the description logic � � � . � � � extends

��� �
by allowing

atomic negation, & , � , and qualified existential quantification. That is, its set of
legal concepts is given by  ����� & � � ��� � �  �  � �/�! � � #=�6 . The
satisfiability problem for � � � is known to be co-NP-complete [7]. �

Theorem 4 Let � be � or an initial segment of � , and let � � � � � ?�� < � ? <�	
be such that � � � � � ��� 	 � ? or � ��� 	 � ? <.	 � is finite. Assume that the set of local
formulas LF is built using only finitely many proposition letters. Then deciding if
a formula in

� � �
is satisfiable can be done in linear time.

Proof. The proof follows the lines of the similar proof in [11]. Let � be the max-
imal � such that � ��� 	 ��? of � ��� 	>� ? < . Given a formula ' in

� � �
, define '��

by replacing every < -subformula of ' that occurs at depth � � � or deeper by < � .
It is easy to see that ' is satisfiable iff '�� is. Hence, we only have to consider the
fragment with formulas of modal depth at most �"� � . A straightforward induction
shows that there are only finitely many non-equivalent formulas in such fragments.
Using this, one can find a fixed number of finite models such that a formula is
satisfiable iff it is satisfiable on one of these models. This can be checked in time
linear in the size of the formula being checked. �

5 A Game-Based Characterization

Our next aim is to obtain an exact semantic characterization of the
� � �

-frag-
ments. Games are a flexible and popular tool for obtaining results of this kind; see
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e.g., [6] for an introduction at the textbook level. Given an appropriate function
� we define a game

� �
that precisely characterizes

� � �
; in Section 6 below we

build on this to capture the expressive power of our
� � �

-fragments.

Definition 5 Let � be a model, and let � and ��� be two subsets of its universe.
We use � �2� � � ' to denote that � ��� � � ' , for all � � � .

The children of � in � are all � such that ����� . We say that �8�	� �
� if for
every � in � there exists ��� in �� with �/����� . We say that �-��� �� if for all ��� of
� � there exists � in � with ����� � (i.e., � � is a subset of the children of � ).

Let � , � be models with domains ��� and ��� , respectively, and let � ��� ��� ,� ��� ��� . Let � be such that ����� � � ��� �    ���
	 or ����� � � � , and assume �
in the domain of � . We write

� � � � �2� � � � � � � �2� 	 to denote the following game.
The game is played by two players, called Di and Si, on relational structures �
and � (intuitively, Di is trying to proof that � and � are different, while Si wants
to show they are similar). A position in the game

� � � � �2� � � � � � � �2� 	 is given by
a pair 3�� � � 5 such that � is a set of elements in � and

�
a set of elements in � ;

3�� � � � � 5 is the initial position. During the �"!,� � 	 -th round, the current position
3���# � � # 5 will change to the new position 3��$# ��� � � # ��� 5 according to the following
rules.

Rule 1 If � ���&%'! 	+� < then Di has to choose a set
� # ��� � � � such that� #1� � � # ��� , a counter-move of Si consists of choosing a set �(# ��� � ���

such that �)# �*� ��# ��� .
Rule 2 If � ���+%,! 	9� ? then Di has to choose a set �$# ��� � ��� such that

��#4�*� ��# ��� . Si has to answer by choosing a set
� # ��� � ��� such that� #1� � � # ��� .

Rule 3 If � ����%-! 	 ��? < then Di can choose any of the previous rules to play by
during this round.

The game ends on position 3�� # � � # 5 when one of the following conditions fires:

Condition 1 There is a formula '�� LF such that � �2�(# � � ' but � � � #/.� ��' .

Condition 2 !/0 � and Si cannot move.

Condition 3 !/0 � and Di cannot move.

Condition 4 Both players have made � moves ( ! �%� ) and none of the conditions
above holds.

We say that Si wins the game if the game finishes because of conditions 3 or 4,
otherwise Di wins. Two important characteristics of the definition of

� �
are its
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directedness (in the rules and in Condition 1), and in its use of sets, instead of
elements, to represent positions. We will see that they are crucial in the following
example.

Example 6 To illustrate the definitions given so far we will play
� � � � , � � � 	 , � ,

� � � 	 � � 	 with � and � as shown in Figure 1 for different values of � .

���
���
�	�


��

���
 �

� �
�
� �

�

Figure 1: Playing a game.

First take � � � 	6� < , then Si has a winning strategy: Di has to move in � with� ���-� ��� 	 . Si can choose either � � � 	 , � � � 	 or � � � � � � 	 , and win the game.
Note that all formulas <>' , with ' local, that are satisfied in � � � � � 	 are satisfied in
� � � � � 	 . Now take � � � 	 � ? ; this time Di has a winning strategy: choose � � � 	 or
� ��� 	 . In any of the two possibilities Si can only choose

� � � � ��� 	 and in both
cases there is a local formula, namely ) or � such that � � � ��� 	 .� �+) or � � � ��� 	 .� � � ,
respectively.

The definition of
� �

has been tailored to the restricted expressivity of the lan-
guage

� � �
. We will now show that making the definition less tight would produce

a mismatch in expressive power.
Suppose we weaken Condition 1 to make it symmetric, requiring that there

is a formula ' � LF such that either � �2� # � � ' but � � � #(.� � ' ; or � � � #��� '
but � �2��# .� � ' . Under this definition Di has a winning strategy for

� � � � , � � � 	 ,
� , � � � 	 , � 	 for any � and � . This would be the case, in general, whenever two
states disagree on the formulas in LF they satisfy. But this would be equivalent to
allow atomic negation in LF! Under the new definition, the game

� �
would be too

discriminating for the expressive power of
� � �

. More generally, making Rules 1
to 3 symmetric would correspond to allowing full negation.

In a similar way, restricting positions to singleton sets (or equivalently, ele-
ments in the domain) the game would be sensible to disjunctions, allowing Di to
define a winning strategy on two models that only differ on disjunctive statements.

Games provide a mechanism for identifying differences between two models. Such
differences may also be captured by logical formulas (in some language) that are
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true in one model but not in the other. The following theorem relates these two
ideas for

� �
-games and

� � �
-equivalence.

Theorem 7 Fix � and � such that � � ����� , and let �-� ��� �    ���
	 � � ?�� < � ? <"	
be given.

1. Si has a winning strategy for the game
� � � � �2� � � � � �2� 	 iff for every for-

mula '#� � ���� , if � �2� � � ' then � � � � ��' .

2. Di has a winning strategy for the game
� � � � �2� � � � � �2� 	 iff there is a for-

mula '#� � � �� , such that � �2� � ��' and � � � .� ��' .

Proof. 1. ��� 	 We will prove this direction using induction on ��� � . We only
discuss the induction step.

Assume that Si has a winning strategy for the game
� � � � �2� � � � � �	� 	 . The

theorem says that all the formulas in LF that are satisfied in all the elements of
� have to be satisfied in all the elements of

�
. As Si has a winning strategy,

Condition 3 or 4 should hold. Condition 3 does not apply and hence Condition 4
ensures the needed condition. Assume that the result holds for

� � � � �2� � � � � �2� 	 .
Let ' in

� � �� ��� such that � �2� � � ' . We first consider the case � ��� � � 	 � ? .

Let ' � � � ������ be a formula such that � �2� � � ' . If ' is a formula in LF,
the truth of ' in � is given by Rule 1. If ' is a conjunction ' � ,9' � , we can use
a second inductive argument (on the number of , -signs) to establish the claim.
Next, ' may be of the form ? ' � with ' � � � � �� . Since � �2� � ��? ' � , we have
that every element �'�%� has an � -child � � such that � ��� � � � ' � . Let us play
with Di choosing ��� �� � ��� � ��� �!�� ' � 	 . Since Si has a winning strategy
for

� � � � �2� � � � � �2�#� � 	 , she will counter-play with a set
� � such that

� � � � �
and will still have a winning strategy for

� � � � �2� � � � � �2� 	 . Using the induction
hypothesis we have that � � � � � ��' � since � �2� � � ��' � . Hence, � � � � ��' .

Suppose � ��� �3� 	 � < . Di has to move in � . Suppose that '*� <>' � and
� � � .� � ' . Then there is a set

� � such that
� ��� � � and � � � ��.� � ' � . Let this

� �
be the set chosen by Di. Since Si has a wining strategy she will choose a set � �
such that �-�*� �� . �� will be such that � �2��� � � ' � . As Si has a winning strategy
for the game

� � � � �2� � � � � � � �2� 	 , from this and the inductive hypothesis we can
conclude that ��� and

� � do indeed satisfy the same set of formulas, a contradiction.
The case where � ������� 	 � ? < reduces to one of the two cases above.

��
 	 Assume that for every ' � � � �� we have that � �2� � �
' implies � � � � � � ' .
We need to define a winning strategy for Si when she plays the game

� � � � , � ,
� ,

�
, � 	 . The proof is by induction on � . For � ��� we need to check that� � � � �2� � � � � �	� 	 starts with a winning position for Si. This is true because by

hypothesis we have that formulas in LF valid in � are also valid in
�

.
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Assume the result holds for � . Suppose that � ��� � � 	 � ? and that Di has
chosen a set � � such that �-� � � � . Let

� � � ' � � � �� � � �2� � � � ' 	 . Let
Si choose a set

� � such that
� ��� � � and � � � �@�� � . The existence of such a

set is given by hypothesis. After this move all the formulas in
� � �� satisfied in

� � are also satisfied in
� � , and, by induction, Si can complete the strategy. For

� ���#�3� 	�� < , Di has to move in � . Let us suppose that Di has chosen a set� � . Define
�

as before. Let ��� be a set of elements in � such that � �2�������' .
�
� will be the move of Si— by using the induction hypothesis again we have the
complete strategy.

The � ������� 	 ��? < case reduces to one of the two cases above.

2. ��� 	 The left-to-right implication is similar to item 1, left-to-right. To prove the
right-to-left implication one can build the required strategy for Di by induction on
the size of the formula ' .

If the formula is an atomic proposition letter then Siwins immediately because
of Rule 1. For the inductive case, we should decide the move for Di in the current
position and the induction hypothesis will provide the rest of the winning strategy.
Since � � � .� � ' , there is an element �*� � �

such that � ���*� .� � ' . Suppose
that '2��< ' � , since � ��� � .� � <>' � implies that there is � � � such that � � ��� � � and
� ��� � � .� � ' � . Following the rules of the game, Di has to move in � : Di has to
choose any subset of the neighbors of

�
such that � � is included. Suppose that

'
� ? ' � , then there exists a set
� � � � � such that � � � � .� � ' � . By inductive

hypothesis, Di has a winning strategy for the game
� � � � �2�
� � � � � � �2� 	 . � � as a

first move together with the previous strategy, gives Di the complete strategy. �

Corollary 8 For every game
� � � � �2� � � � � �2� 	 either Di or Si has a winning

strategy, i.e., the game
� � � � �2� � � � � �2� 	 is deterministic.

6 The Expressive Power of
� 	��

Van Benthem [19] proved the following preservation result: a class of models de-
fined by a first-order sentence is closed under bisimulations iff it can be defined
by a modal formula. Rosen [17] proved that this result remains true over the class
of finite structures. Kurtonina and de Rijke [12] extended Van Benthem’s result
in different direction, by proving analogous preservation results for broad classes
of description logics, including both restrictions and extension of the basic modal
language such as

��� �
; see also [13].

Below we prove a general preservation result, for each of the fragments defined
in Definition 2, over the class of finite structures. Our proof, which is based on the
games introduced in the previous section, follows the structure of Rosen’s proof.

9



For the formulation of our results it is convenient to work with so-called pointed
models � � � � � 	 ; these are models with a distinguished element.

Definition 9 Let � and � two models with distinguished elements � � and � � re-
spectively. We write ��� � ��� � to denote that Si has winning strategies for both
games

� � � � � � � � 	 � � � � � � 	 �2� 	 and
� � � � � � � � 	 � � � � � � 	 �2� 	 . We write ��� ���� �

to denote that Si has winning strategies for the corresponding infinite games.

The first key theorem in Rosen’s paper is the following.

Theorem 10 (Rosen [17]) Let
�

be any class of models (each model � with a dis-
tinguished node � � ), closed under isomorphism. Let

� � be any subclass of
�

, also
closed under isomorphism. Then for all � , the following conditions are equivalent:

1. For all � � � � , � � � % � � , � .� � � .

2. There is a modal formula of quantifier rank � � that defines
� � over

�
We extend this theorem to be able to cope with our restricted fragments.

Theorem 11 Let
�

be any class of models (each model � with a distinguished
node � � ), closed under isomorphism. Let

� � be a subset of
�

also closed under
isomorphism. For every � , let 	 � be the biggest subset of

� � �� such that all the
formulas in 	 � are satisfied in � � by all the models � in

� � . If 	 � .��
 then the
following conditions are equivalent:

1. For all � � � � , � � � % � � , � .� � � � � .

2. There is a formula ' in 	 � such that ' defines
� � over

�
.

Observe the following relations between Theorems 10 and 11. The set
� � �� in

Rosen’s theorem is given by all modal formulas in which the maximal number
of nested modal operators is at most � . The set 	 � (of formulas satisfied in all
elements of

� � ) is never empty: the set of modal formulas containing at most �
nested modal operators is logically finite, and every model in

� � will satisfy ' or
� ' for ' with modal depth less or equal than � . Form the disjunction of one such
formula ' per model in

�
, and this formula will be true in all the elements of

� � .
Proof of Theorem 11. ( � � � ) Suppose that 	 � .�
 and suppose that for all
� � � � , � � � % � � , � .� � � � � . By Theorem 7 this implies that for all � � � � ,
� � � % � � , there is a formula ' in 	 � such that � � � � � � ' but � � � � .� � ' .
Let � be any model in

� � , we define
� � by putting

� �����$� ' � � � �� � � � �
' and � .� � ' with � � � % � � 	 . Note that since

� � �� is finite,
� � is a finite
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conjunction. Note also that
� � belongs to

� � �� and that it is satisfied by all the
models in

�
(it belongs to 	 � ) but not by any model in

� � . Hence
� � is the needed

definition.

( � � � ) Suppose that 	 � .� 
 and that there is a formula ' in 	 � such that ' de-
fines

� � over
�

. By Theorem 7, Di will have a winning strategy for the appropriate
games and for all � � � � , � � � % � � , it will be true that � .� � � � � . �

We need some further terminology. Given a model � and a node � in � , we say
that � is a descendant of � if � � � � , where � � is the transitive closure of � . The
family of � in � , written

���
� , is the submodel of � with universe � � 	 � � � �

� is a descendant of � 	 . We say that � and � are disjoint iff
� �
� � ���� � 
 . The� -neighborhood of a node � , denoted ��� �"� 	 , is defined inductively. � � �"� 	 , is the

submodel of � with universe � � 	 , and for all � � � , � �	��� ��� �"� 	 iff � �	�
� �"� 	
or there is a � � ���
� �"� 	 such that � � � ��� � ������ � � . An � -tree is a directed tree
rooted at � of height � � . An � -pseudotree is a model such that ��� ��� 	 is a tree
with the property that all distinct pairs of its leaves are disjoint, as defined above.
As is standard, �� denotes isomorphism.

Proposition 12 Let � � � � � 	 and � � � � � 	 be two models such that � � � � � 	 � � ���
� � � � � 	 . Then there are � -pseudotrees � � � � � ��� 	 and � � � � � ��� 	 such that � � � � � 	
� ���� � � � � � � � 	 , � � � � � 	 � ���� � � � � � � � 	 and � � � � � � 	 �� � � � � � � 	 .
Proof. We will specify an algorithm that transforms the two pointed models into
models with isomorphic � -neighborhoods. After each step � ( � � � ) we have
models � ��� � � � � 	 and � ��� � � � � 	 such that � � � � � 	 � �� � � ��� � � � � 	 and � � � � � 	 � �� �
� ��� � � � � 	 while � ��� and � ��� have isomorphic � neighborhoods. At each step � �'� ,
��� ��� (respectively ��� ��� ) is obtained from ��� ( ��� ) by adding or removing copies
of families of nodes at distance � �%� from their root.

Let � � � �    � ��� � � � �    � ��� 	 be the set of children of � � and � � . We will build
the models using the two following rules: If � ��� 	 ��< then for constructing � �
and � � we just choose one � # and

�! 
and drop all the remaining children. We will

redefine the set of local formulas satisfied in � # and
�  

as the local formulas that
are common to all states � � � �    � ��� � � � �    � � � 	 .

All the formulas in
� � �� will either start with a box or will be local formula.

If a formula '�� <>' � is satisfied in � then ' � will be satisfied in all children of� � , and, in particular, in � # , hence ' will be satisfied in � ��" .
If � ��� 	9� ? , the relation � � � ���� induces an equivalence classes on the set

� � � �    � ��� � � � �    � � � 	 . Note that not every equivalence class necessarily has a
member in each � and � . An example of such a configuration is as in (a) below:

11
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(a) (b)

��

������������
 ������
 ������������


�������	����

To obtain � � and � � with isomorphic � -neighborhoods of � such that � � ����
� � , we have to do two things. First we should add enough copies of families of
the children � # and

�  
such that each equivalence class has an equal number of

members in � � and in � � . Second, if an element
�

is not related by � � � ���� to an
element in the opposite model, we just drop its family.

We should now verify that we are not throwing away some states that provide
the only way to satisfy a certain formula. Suppose for contradiction that this is the
case: there is a state

� # and a formula ' such that � � � �  � � ' (hence � � � � � � ? ' )
and

�  
is the only child of � � that satisfies this formula. Since � � � � � � ?@' there

is a child � # of � � such that � � � # � ��' . By hypothesis � # is not � � � ���� -related to�  
, meaning that there is a formula ' � such that � � � # � ��' � but � � �  .� ��' � . As

' ,9' � � � ���
there is another child of � � that satisfies ' , a contradiction. The

case where � ��� �%� 	 ��? < reduces to one of the two cases above. The next step on
the algorithm is to move to each of the elements in the isomorphic neighborhoods
and apply the same schema for each pair of nodes related by the isomorphism.

The models ��� and ��� constructed during the proof will be both isomorphic
and � �� � -related to � and � , respectively, as needed. �

Before we can formulate our main expressiveness result, we need one more auxil-
iary result, due to Rosen. In formulating it, we write ��� � � to denote that � and
� satisfy the same first-order sentences with at most � nested quantifiers.

Theorem 13 (Rosen [17]) Let � and � be two � ��� ��� 	 	 -pseudotrees for which
����� ��� � � � 	 �� ����� ��� � � � 	 holds, where � �"� 	 is the Hanf function. Then there are
� � and � � such that ��� ���� � � , � � ���� � � , and � ��� � � � .
Actually, Rosen used � (bisimulation) in his theorem instead of � ���� , but if two
models are related by � they will be related by � ���� .
Theorem 14 Let

�
be a class of finite pointed models and

� � a subclass of
�

such
that the set of formulas ' � � � �

that are satisfied in all the models in
� � is non-

empty. Let
� � be defined by a first-order formula  . If

� � is closed under � ���� , then� � is definable by a formula in
� � �

.
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Proof. Suppose that
� � is defined by a first-order sentence and closed under � ����

but not definable by a formula in
� � �

. We want to prove that for all � there
are pointed models � � � � � 	4� � � and � � � � � 	 � � % � � such that � � � � � 	�� �
� � � � � 	 , which would contradict the hypothesis. For any � �#� , Theorem 11 says

that there are models � ��� � � � � 	 and � � � � � � � 	 such that � � � � � � � 	 � ��� ���� � � � � � � � � 	 .
Proposition 12 then lets us construct models such that � � � � � � � � � 	 � �� � � � � � � � � � � 	 ,
and � ��� ��� � � � � � 	 �� � ��� ��� � � � � � 	 . Finally, we apply Theorem 13 to obtain the
needed � � � � � 	 and � � � � � 	 and the contradiction. �

7 Extensions

In this section we discuss some possible extensions of
� � �

for which Theorem 14
still holds. Such extensions involve two main issues: modifying

� � �
and finding

the corresponding game.
First of all, we can easily cater for atomic negations, simply by expanding the

definition of local formulas to also include negations of proposition letters. In this
case the game definition is not affected.

Next, adding disjunctions is straightforward. The new
� � � � � 	 -fragments are

closely related the description logic
�����

, just liked the original
� � �

-fragments
are closely related to

�����
. Their definitions are given by:

� � �� � � 	 � LF,� � �� ��� � � 	 � the closure under , and � of � LF
� � ? '-� '#� � � �� � � 	 and � ��� �

� 	 � ? 	 � � <>' ��' � � � �� � � 	 and � ��� � � 	*� <"	 � � ?@' � <>' ��' �� � �� � � 	 and � ���#� � 	 � ? <.	 	 . Di and Si will have to play using singletons.
In other words, the first designated position in each model will be a singleton and
both Di and Si have to choose singletons in following moves. Note that once
we have added the usual connectives and modal operators, � ���� is equivalent to
bisimulation and Theorem 10 is actually equivalent to Theorem 11.

Another natural extension is to go multi-modal; this can be done in many dif-
ferent ways. The obvious one is to replace < with . �	#10 in each of the production
rules in Definition 2. This method will not control the modal depth at which a
particular relation is used. Alternatively, we can let our functions � choose which
subset of modal operators is to be considered legal at each level in the definition of� � �

. Our main complexity, characterization, and expressiveness results hold for
both ways of going multi-modal.

Finally, we can go a step further and allow unqualified number restrictions, thus
moving to modal counterparts of fragments of the description logic

��� � . Recall
that unqualified number restrictions are formulas of the form ?�� � & that are true
in a state � iff there are � � , . . . , ��� with � � � such that � ��� � , . . . , ������� .
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Unqualified number restrictions are still very local, and because of that it is easy
to extend our setup to deal with them: we can simply add them to the set of local
formulas, and our characterization and expressiveness results will continue to hold.

8 Conclusions and Future Work

We have introduced a novel mechanism for decomposing modal logic into frag-
ments. Each of these fragments can be specified in a very fine-grained manner, and
for each of them we have defined a notion of game that allows us to characterize
the fragment’s expressive power. We have also provided uniform upper bounds for
the complexity of the satisfiability problem for each fragment. Our games provide
a natural tool to understand the fragments and the constructors they admit.

The first natural next step is to extend our fragment so as to also capture more
expressive modal logics, especially ones with unqualified number restrictions. We
also aim to further explore how these fragments behave computationally: not only
by given better upper bounds for the complexity of the satisfiability problem, but
also by considering different reasoning tasks, for example model checking.

Finally, in our characterization of the expressive power of the
� � �

-fragments
we adapted a proof due to Rosen. Otto [14] has recently given a alternative proof
of Rosen’s result, that of a far less combinatorial nature than Rosen’s. It would
be instructive to see what additional insights this proof yields when adapted to our
fragments.
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