53 research outputs found

    Design, evaluation, and control of nexus: a multiscale additive manufacturing platform with integrated 3D printing and robotic assembly.

    Get PDF
    Additive manufacturing (AM) technology is an emerging approach to creating three-dimensional (3D) objects and has seen numerous applications in medical implants, transportation, aerospace, energy, consumer products, etc. Compared with manufacturing by forming and machining, additive manufacturing techniques provide more rapid, economical, efficient, reliable, and complex manufacturing processes. However, additive manufacturing also has limitations on print strength and dimensional tolerance, while traditional additive manufacturing hardware platforms for 3D printing have limited flexibility. In particular, part geometry and materials are limited to most 3D printing hardware. In addition, for multiscale and complex products, samples must be printed, fabricated, and transferred among different additive manufacturing platforms in different locations, which leads to high cost, long process time, and low yield of products. This thesis investigates methods to design, evaluate, and control the NeXus, which is a novel custom robotic platform for multiscale additive manufacturing with integrated 3D printing and robotic assembly. NeXus can be used to prototype miniature devices and systems, such as wearable MEMS sensor fabrics, microrobots for wafer-scale microfactories, tactile robot skins, next generation energy storage (solar cells), nanostructure plasmonic devices, and biosensors. The NeXus has the flexibility to fixture, position, transport, and assemble components across a wide spectrum of length scales (Macro-Meso-Micro-Nano, 1m to 100nm) and provides unparalleled additive process capabilities such as 3D printing through both aerosol jetting and ultrasonic bonding and forming, thin-film photonic sintering, fiber loom weaving, and in-situ Micro-Electro-Mechanical System (MEMS) packaging and interconnect formation. The NeXus system has a footprint of around 4m x 3.5m x 2.4m (X-Y-Z) and includes two industrial robotic arms, precision positioners, multiple manipulation tools, and additive manufacturing processes and packaging capabilities. The design of the NeXus platform adopted the Lean Robotic Micromanufacturing (LRM) design principles and simulation tools to mitigate development risks. The NeXus has more than 50 degrees of freedom (DOF) from different instruments, precise evaluation of the custom robots and positioners is indispensable before employing them in complex and multiscale applications. The integration and control of multi-functional instruments is also a challenge in the NeXus system due to different communication protocols and compatibility. Thus, the NeXus system is controlled by National Instruments (NI) LabVIEW real-time operating system (RTOS) with NI PXI controller and a LabVIEW State Machine User Interface (SMUI) and was programmed considering the synchronization of various instruments and sequencing of additive manufacturing processes for different tasks. The operation sequences of each robot along with relevant tools must be organized in safe mode to avoid crashes and damage to tools during robots’ motions. This thesis also describes two demonstrators that are realized by the NeXus system in detail: skin tactile sensor arrays and electronic textiles. The fabrication process of the skin tactile sensor uses the automated manufacturing line in the NeXus with pattern design, precise calibration, synchronization of an Aerosol Jet printer, and a custom positioner. The fabrication process for electronic textiles is a combination of MEMS fabrication techniques in the cleanroom and the collaboration of multiple NeXus robots including two industrial robotic arms and a custom high-precision positioner for the deterministic alignment process

    Effects of environmental noise on the accuracy of millimeter sized grippers in cantilever configuration and active stabilisation.

    No full text
    International audienceThis paper presents a study about the effects of environmental noise on millimeter sized grippers in cantilever configuration. The study is motivated and conducted aiming at assessing the level of accuracy loss when performing micromanipulation/ microassembly tasks in noisy environments as well in typical microrobotics laboratories as in industrial locations or operating rooms. Ground motion and acoustic noises within a typical microrobotic laboratory are characterized in the frequency domain and their effects on cantilevers of different lengths are inspected. The relevance of a typical vibration isolation table is evaluated and the effects of low and high acoustic noises are assessed. A modeling of a cantilever with base excitation is thereafter conducted in the state space using finite difference formulation and a stabilization of a disturbed cantilever is obtained at the nanometer level in noisy environments allowing perspectives to high precision micromanipulation tasks in hostile locations

    Waveguide microgripper for identification, sensing and manipulation

    Get PDF
    A Waveguide Microgripper utilizes flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection or fluorescence. One of the simplest capabilities of the waveguide microgripper is to be able to detect the presence of a microobject between the microgripper facets by monitoring the transmitted intensity of light coupled through the facets. The intensity of coupled light is expected to drop when there is an object obstructing the path of light. The optical sensing and characterization function of the microgripper is a strong function of the optical power incident on the structure of interest. Hence it is important to understand the factors affecting the power distribution across the facet. The microgripper is also capable of detecting the fluorescence. This capability of microgripper is expected to have applications in medical, bio-medical and related fields

    A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging

    Get PDF
    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 ÎŒm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper

    Haptic feedback in teleoperation in Micro-and Nano-Worlds.

    No full text
    International audienceRobotic systems have been developed to handle very small objects, but their use remains complex and necessitates long-duration training. Simulators, such as molecular simulators, can provide access to large amounts of raw data, but only highly trained users can interpret the results of such systems. Haptic feedback in teleoperation, which provides force-feedback to an operator, appears to be a promising solution for interaction with such systems, as it allows intuitiveness and flexibility. However several issues arise while implementing teleoperation schemes at the micro-nanoscale, owing to complex force-fields that must be transmitted to users, and scaling differences between the haptic device and the manipulated objects. Major advances in such technology have been made in recent years. This chapter reviews the main systems in this area and highlights how some fundamental issues in teleoperation for micro- and nano-scale applications have been addressed. The chapter considers three types of teleoperation, including: (1) direct (manipulation of real objects); (2) virtual (use of simulators); and (3) augmented (combining real robotic systems and simulators). Remaining issues that must be addressed for further advances in teleoperation for micro-nanoworlds are also discussed, including: (1) comprehension of phenomena that dictate very small object (< 500 micrometers) behavior; and (2) design of intuitive 3-D manipulation systems. Design guidelines to realize an intuitive haptic feedback teleoperation system at the micro-nanoscale level are proposed

    Workshop on "Control issues in the micro / nano - world".

    No full text
    International audienceDuring the last decade, the need of systems with micro/nanometers accuracy and fast dynamics has been growing rapidly. Such systems occur in applications including 1) micromanipulation of biological cells, 2) micrassembly of MEMS/MOEMS, 3) micro/nanosensors for environmental monitoring, 4) nanometer resolution imaging and metrology (AFM and SEM). The scale and requirement of such systems present a number of challenges to the control system design that will be addressed in this workshop. Working in the micro/nano-world involves displacements from nanometers to tens of microns. Because of this precision requirement, environmental conditions such as temperature, humidity, vibration, could generate noise and disturbance that are in the same range as the displacements of interest. The so-called smart materials, e.g., piezoceramics, magnetostrictive, shape memory, electroactive polymer, have been used for actuation or sensing in the micro/nano-world. They allow high resolution positioning as compared to hinges based systems. However, these materials exhibit hysteresis nonlinearity, and in the case of piezoelectric materials, drifts (called creep) in response to constant inputs In the case of oscillating micro/nano-structures (cantilever, tube), these nonlinearities and vibrations strongly decrease their performances. Many MEMS and NEMS applications involve gripping, feeding, or sorting, operations, where sensor feedback is necessary for their execution. Sensors that are readily available, e.g., interferometer, triangulation laser, and machine vision, are bulky and expensive. Sensors that are compact in size and convenient for packaging, e.g., strain gage, piezoceramic charge sensor, etc., have limited performance or robustness. To account for these difficulties, new control oriented techniques are emerging, such as[d the combination of two or more ‘packageable' sensors , the use of feedforward control technique which does not require sensors, and the use of robust controllers which account the sensor characteristics. The aim of this workshop is to provide a forum for specialists to present and overview the different approaches of control system design for the micro/nano-world and to initiate collaborations and joint projects

    Optical MEMS Switches: Theory, Design, and Fabrication of a New Architecture

    Get PDF
    The scalability and cost of microelectromechanical systems (MEMS) optical switches are now the important factors driving the development of MEMS optical switches technology. The employment of MEMS in the design and fabrication of optical switches through the use of micromachining fabricated micromirrors expands the capability and integrity of optical backbone networks. The focus of this dissertation is on the design, fabrication, and implementation of a new type of MEMS optical switch that combines the advantages of both 2-D and 3-D MEMS switch architectures. This research presents a new digital MEMS switch architecture for 1×N and N×N optical switches. The architecture is based on a new microassembled smart 3-D rotating inclined micromirror (3DRIM). The 3DRIM is the key device in the new switch architectures. The 3DRIM was constructed through a microassembly process using a passive microgripper, key, and inter-lock (PMKIL) assembly system. An electrostatic micromotor was chosen as the actuator for the 3DRIM since it offers continuous rotation as well as small, precise step motions with excellent repeatability that can achieve repeatable alignment with minimum optical insertion loss between the input and output ports of the switch. In the first 3DRIM prototype, a 200×280 microns micromirror was assembled on the top of the electrostatic micromotor and was supported through two vertical support posts. The assembly technique was then modified so that the second prototype can support micromirrors with dimensions up to 400×400 microns. Both prototypes of the 3DRIM are rigid and stable during operation. Also, rotor pole shaping (RPS) design technique was introduced to optimally reshape the physical dimensions of the rotor pole in order to maximize the generated motive torque of the micromotor and minimize the required driving voltage signal. The targeted performance of the 3DRIM was achieved after several PolyMUMPs fabrication runs. The new switch architecture is neither 2-D nor 3-D. Since it is composed of two layers, it can be considered 2.5-D. The new switch overcomes many of the limitations of current traditional 2-D MEMS switches, such as limited scalability and large variations in the insertion loss across output ports. The 1×N MEMS switch fabric has the advantage of being digitally operated. It uses only one 3DRIM to switch the light signal from the input port to any output port. The symmetry employed in the switch design gives it the ability to incorporate a large number of output ports with uniform insertion losses over all output channels, which is not possible with any available 2-D or 3-D MEMS switch architectures. The second switch that employs the 3DRIM is an N×N optical cross-connect (OXC) switch. The design of an N×N OXC uses only 2N of the 3DRIM, which is significantly smaller than the N×N switching micromirrors used in 2-D MEMS architecture. The new N×N architecture is useful for a medium-sized OXC and is simpler than 3-D architecture. A natural extension of the 3DRIM will be to extend its application into more complex optical signal processing, i.e., wavelength-selective switch. A grating structures have been selected to explore the selectivity of the switch. For this reason, we proposed that the surface of the micromirror being replaced by a suitable gratings instead of the flat reflective surface. Thus, this research has developed a rigorous formulation of the electromagnetic scattered near-field from a general-shaped finite gratings in a perfect conducting plane. The formulation utilizes a Fourier-transform representation of the scattered field for the rapid convergence in the upper half-space and the staircase approximation to represent the field in the general-shaped groove. This method provides a solution for the scattered near-field from the groove and hence is considered an essential design tool for near-field manipulation in optical devices. Furthermore, it is applicable for multiple grooves with different profiles and different spacings. Each groove can be filled with an arbitrary material and can take any cross-sectional profile, yet the solution is rigorous because of the rigorous formulations of the fields in the upper-half space and the groove reigns. The efficient formulation of the coefficient matrix results in a banded-matrix form for an efficient and time-saving solution

    Modeling and optimal force control of a nonlinear electrostatic microgripper.

    No full text
    International audienceMicrogrippers with integrated force sensors are very efficient tools for dexterous manipulation of objects in the microworld (size less than 100 ”m). In this paper, we first propose a modeling approach of a nonlinear electrostatic microgripper with integrated force sensor while handling calibrated micro-glass balls of 80 ”m diameter. Limit of the linear operating range of the microgripper is investigated and a nonlinear model is proposed and validated experimentally for large displacements. We then propose the design of an optimal force feedback controller to ensure reliable handling operations with appropriate gripping forces. To overcome the limitation caused by the low signal to noise ratio provided by the sensor, a Kalman filter is used to estimate the states of the process from noise measurements. The control law is implemented and validated using real time experiments for 10 ”N gripping force reference with a noise level (peak-to-peak magnitude of the noise) reaching 8 ”N in the worst case. The effectiveness of the optimal filter is proven by comparison with external interferometric measurements

    Noise characterization in millimeter sized micromanipulation systems.

    No full text
    International audienceE cient and dexterous manipulation of very small (micrometer and millimeter sized) objects require the use of high precision micromanipulation systems. The accuracy of the positioning is nevertheless limited by the noise due to vibrations of the end e ectors making it di cult to achieve precise micrometer and nanometer displacements to grip small objects. The purpose of this paper is to analyze the sources of noise and to take it into account in dynamic models of micromanipulation systems. Environmental noise is studied considering the following sources of noise: ground motion and acoustic noises. Each source of noise is characterized in di erent environmental conditions and a separate description of their e ects is investigated on micromanipulation systems using millimeter sized cantilevers as end e ectors. Then, using the nite di erence method (FDM), a dynamic model taking into account studied noises is used. Ground motion is described as a disturbance transmitted by the clamping to the tip of the cantilever and acoustic noises as external uniform and orthogonal waves. For model validation, an experimental setup including cantilevers of di erent lengths is designed and a high resolution laser interferometer is used for vibration measurements. Results show that the model allows a physical interpretation about the sources of noise and vibrations in millimeter sized micromanipulation systems leading to new perspectives for high positioning accuracy in robotics micromanipulation through active noise control
    • 

    corecore