1,512 research outputs found

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Traffic modelling in WLANs and cellular networks.

    Get PDF
    Over the past several years there has been a considerable amount of research in the field of traffic modelling for WLANs and Cellular Networks as well as the integration of these networks. To date, the focus of published work has been largely on the operation of delay sensitive calls. Because the voice calls are no longer the only service in wireless and cellular systems, multi-service traffic networks now consist of integrated services with distinctive Quality of Service (QoS) requirements. Therefore, a number of different schemes have been proposed to deal with this problem. Most of these schemes only consider mobility and multi-service traffic characteristics. However, few studies have considered the impact of buffering of voice calls in integrated voice and data services. Therefore, we aim to make a critical investigation of existing traffic models and offer generic traffic schemes for WLAN and Cellular networks in order to analyse the impact of buffering of voice calls in hybrid networks. For this purpose, an analytical model for performance evaluation of a single server network with voice and data traffic is considered. In this system, voice is given priority but can be buffered in a limited way. The analysis shows that this approach can be used in fast mobile systems
    • …
    corecore