4 research outputs found

    Self-healing in unattended wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) appeal to a wide range of applications that involve the monitoring of various physical phenomena. However, WSNs are subject to many threats. In particular, lack of pervasive tamper-resistant hardware results in sensors being easy targets for compromise. Having compromised a sensor, the adversary learns all the sensor secrets, allowing it to later encrypt/decrypt or authenticate messages on behalf of that sensor. This threat is particularly relevant in the novel unattended wireless sensor networks (UWSNs) scenario. UWSNs operate without constant supervision by a trusted sink. UWSN?s unattended nature and increased exposure to attacks prompts the need for special techniques geared towards regaining security after being compromised. In this article, we investigate cooperative self-healing in UWSNs and propose various techniques to allow unattended sensors to recover security after compromise. Our techniques provide seamless healing rates even against a very agile and powerful adversary. The effectiveness and viability of our proposed techniques are assessed by thorough analysis and supported by simulation results. Finally, we introduce some real-world issues affecting UWSN deployment and provide some solutions for them as well as a few open problems calling for further investigation

    Mobility and Cooperation to Thwart Node Capture Attacks in MANETs

    Get PDF
    The nature of mobile ad hoc networks (MANETs), often unattended, makes this type of networks subject to some unique security issues. In particular, one of the most vexing problem for MANETs security is the node capture attack: an adversary can capture a node from the network eventually acquiring all the cryptographic material stored in it. Further, the captured node can be reprogrammed by the adversary and redeployed in the network in order to perform malicious activities. In this paper, we address the node capture attack in MANETs. We start from the intuition that mobility, in conjunction with a reduced amount of local cooperation, helps computing effectively and with a limited resource usage network global security properties. Then, we develop this intuition and use it to design a mechanism to detect the node capture attack. We support our proposal with a wide set of experiments showing that mobile networks can leverage mobility to compute global security properties, like node capture detection, with a small overhead

    Mobility and Cooperation to Thwart Node Capture Attacks in MANETs

    No full text
    The nature of mobile ad hoc networks (MANETs), often unattended, makes this type of networks subject to some unique security issues. In particular, one of the most vexing problem for MANETs security is the node capture attack: an adversary can capture a node from the network eventually acquiring all the cryptographic material stored in it. Further, the captured node can be reprogrammed by the adversary and redeployed in the network in order to perform malicious activities. In this paper, we address the node capture attack in MANETs. We start from the intuition that mobility, in conjunction with a reduced amount of local cooperation, helps computing effectively and with a limited resource usage network global security properties. Then, we develop this intuition and use it to design a mechanism to detect the node capture attack. We support our proposal with a wide set of experiments showing that mobile networks can leverage mobility to compute global security properties, like node capture detection, with a small overhead.</p

    Implementation of SNS Model for Intrusion Prevention in Wireless Local Area Network

    Get PDF
    corecore