258 research outputs found

    On the Suspension Design of Paquitop, a Novel Service Robot for Home Assistance Applications

    Get PDF
    The general and constant ageing of the world population that has been observed in the last decade has led robotics researchers community to focus its aims to answer the ever-growing demand for health care, housing, care-giving, and social security. Among others, the researchers at Politecnico di Torino are developing a novel platform to enhance the performance offered by present-day issues, and to assess many others which were not even taken into consideration before they have been highlighted by the pandemic emergency currently in progress. This situation, in fact, made dramatically clear how important it is to have reliable non-human operators whom one can trust when the life of elderly or weak patients is endangered by the simple presence of other people. The platform, named Paquitop, features an innovative architecture conceived for omni-directional planar motion. The machine is designed for domestic, unstructured, and variously populated environments. Therefore, the mobile robot should be able to avoid or pass over small obstacles, passing through the capability to achieve specific person tracking tasks, and arriving to the need of operating with an high dynamic performance. Given its purpose, this work addresses the design of the suspension system which enables the platform to ensure a steady floor contact and adequate stability in every using condition. Different configurations of such system are then presented and compared through use-case simulations

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Designing Omni-Directional Mobile Robot Platform for Research

    Get PDF
    Machines, as a key workforce in manufacturing, mining, construction, are essential for industry, and socially. However, existing mobile robots’ designs do not provide enough mobility and maneuverability. This is one of the major factors that requires an improved design of mobile robot platform. This thesis is focused on designing an improved Omni-directional robot platform that has good mobility and maneuverability. To realize these conditions, a lot of criteria and constraints need to be considered in the design process. The conceptual design flows of this mobile robot are to satisfy the need of a mobile robot platform, establish Omni-directional mobile robot specifications followed by concept generation and concept selection. A full decomposition of Omni-directional mobile robot was done. This was followed by building a morphology chart to gather several ideas for those sub-functions of mobile robot. Combination of different types of sub-functions will generate several new Omni-directional mobile robot concepts. The concepts were drafted by using Three-dimensional (3-D) Computer Aided Designing SOLIDWORKS software. After concept generation, the concepts were evaluated by using weighted decision matrix method. The best concept was generated from 3-D design to get 2-D technical drawing and kinematics analysis. These analysis and results of the robot performance are presented in this thesi

    Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law

    Get PDF
    This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination,  it  always produce  some errors.  Therefore,  a  mobile robot  requires  a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement . The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved

    Design and Development of an Integrated Mobile Robot System for Use in Simple Formations

    Get PDF
    In recent years, formation control of autonomous unmanned vehicles has become an active area of research with its many broad applications in areas such as transportation and surveillance. The work presented in this thesis involves the design and implementation of small unmanned ground vehicles to be used in leader-follower formations. This mechatronics project involves breadth in areas of mechanical, electrical, and computer engineering design. A vehicle with a unicycle-type drive mechanism is designed in 3D CAD software and manufactured using 3D printing capabilities. The vehicle is then modeled using the unicycle kinematic equations of motion and simulated in MATLAB/Simulink. Simple motion tasks are then performed onboard the vehicle utilizing the vehicle model via software, and leader-follower formations are implemented with multiple vehicles

    Distributed active traction control system applied to the RoboCup middle size league

    Get PDF
    This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL). The slip control problem is formulated using simple friction models for ISePorto Team robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies in local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto robots and was used to control and detect loss of for traction. %and to detect the ball in the kicking device. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented

    Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks

    Get PDF
    In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertaintiesFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin
    • …
    corecore