101,199 research outputs found

    Structure and evolution of chlorate reduction composite transposons.

    Get PDF
    UnlabelledThe genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of genomes failed to join regions adjacent to genes involved in chlorate reduction, suggesting the presence of repeat regions. Using a bioinformatics approach and finishing PCRs to connect fragmented contigs, we discovered that chlorate reduction genes are flanked by insertion sequences, forming composite transposons in all four newly sequenced strains. These insertion sequences delineate regions with the potential to move horizontally and define a set of genes that may be important for chlorate reduction. In addition to core metabolic components, we have highlighted several such genes through comparative analysis and visualization. Phylogenetic analysis places chlorate reductase within a functionally diverse clade of type II dimethyl sulfoxide (DMSO) reductases, part of a larger family of enzymes with reactivity toward chlorate. Nucleotide-level forensics of regions surrounding chlorite dismutase (cld), as well as its phylogenetic clustering in a betaproteobacterial Cld clade, indicate that cld has been mobilized at least once from a perchlorate reducer to build chlorate respiration.ImportanceGenome sequencing has identified, for the first time, chlorate reduction composite transposons. These transposons are constructed with flanking insertion sequences that differ in type and orientation between organisms, indicating that this mobile element has formed multiple times and is important for dissemination. Apart from core metabolic enzymes, very little is known about the genetic factors involved in chlorate reduction. Comparative analysis has identified several genes that may also be important, but the relative absence of accessory genes suggests that this mobile metabolism relies on host systems for electron transport, regulation, and cofactor synthesis. Phylogenetic analysis of Cld and ClrA provides support for the hypothesis that chlorate reduction was built multiple times from type II dimethyl sulfoxide (DMSO) reductases and cld. In at least one case, cld has been coopted from a perchlorate reduction island for this purpose. This work is a significant step toward understanding the genetics and evolution of chlorate reduction

    Identifying Structural Variation in Haploid Microbial Genomes from Short-Read Resequencing Data Using Breseq

    Get PDF
    Mutations that alter chromosomal structure play critical roles in evolution and disease, including in the origin of new lifestyles and pathogenic traits in microbes. Large-scale rearrangements in genomes are often mediated by recombination events involving new or existing copies of mobile genetic elements, recently duplicated genes, or other repetitive sequences. Most current software programs for predicting structural variation from short-read DNA resequencing data are intended primarily for use on human genomes. They typically disregard information in reads mapping to repeat sequences, and significant post-processing and manual examination of their output is often required to rule out false-positive predictions and precisely describe mutational events. Results: We have implemented an algorithm for identifying structural variation from DNA resequencing data as part of the breseq computational pipeline for predicting mutations in haploid microbial genomes. Our method evaluates the support for new sequence junctions present in a clonal sample from split-read alignments to a reference genome, including matches to repeat sequences. Then, it uses a statistical model of read coverage evenness to accept or reject these predictions. Finally, breseq combines predictions of new junctions and deleted chromosomal regions to output biologically relevant descriptions of mutations and their effects on genes. We demonstrate the performance of breseq on simulated Escherichia coli genomes with deletions generating unique breakpoint sequences, new insertions of mobile genetic elements, and deletions mediated by mobile elements. Then, we reanalyze data from an E. coli K-12 mutation accumulation evolution experiment in which structural variation was not previously identified. Transposon insertions and large-scale chromosomal changes detected by breseq account for similar to 25% of spontaneous mutations in this strain. In all cases, we find that breseq is able to reliably predict structural variation with modest read-depth coverage of the reference genome (>40-fold). Conclusions: Using breseq to predict structural variation should be useful for studies of microbial epidemiology, experimental evolution, synthetic biology, and genetics when a reference genome for a closely related strain is available. In these cases, breseq can discover mutations that may be responsible for important or unintended changes in genomes that might otherwise go undetected.U.S. National Institutes of Health R00-GM087550U.S. National Science Foundation (NSF) DEB-0515729NSF BEACON Center for the Study of Evolution in Action DBI-0939454Cancer Prevention & Research Institute of Texas (CPRIT) RP130124University of Texas at Austin startup fundsUniversity of Texas at AustinCPRIT Cancer Research TraineeshipMolecular Bioscience

    Decentralized mobility models for data collection in wireless sensor networks

    Full text link
    Controlled mobility in wireless sensor networks provides many benefits towards enhancing the network performance and prolonging its lifetime. Mobile elements, acting as mechanical data carriers, traverse the network collecting data using single-hop communication, instead of the more energy demanding multi-hop routing to the sink. Scaling up from single to multiple mobiles is based more on the mobility models and the coordination methodology rather than increasing the number of mobile elements in the network. This work addresses the problem of designing and coordinating decentralized mobile elements for scheduling data collection in wireless sensor networks, while preserving some performance measures, such as latency and amount of data collected. We propose two mobility models governing the behaviour of the mobile element, where the incoming data collection requests are scheduled to service according to bidding strategies to determine the winner element. Simulations are run to measure the performance of the proposed mobility models subject to the network size and the number of mobile elements.<br /

    Genome-wide analysis of the emigrant family of MITEs: amplification dynamics and evolution of genes in Arabidopsis thaliana

    Get PDF
    MITEs are structurally similar to defective class II elements but their high copy number and the size and sequence conservation of most MITE families suggest that they can be amplified by a replicative mechanism. Here we present a genome-wide analysis of the Emigrant family of MITEs from Arabidopsis thaliana. In order to be able to detect divergent ancient copies and low copy number subfamilies with a different internal sequence we have developed a computer program (http://www.lsi.upc.es/~alggen) that allows looking for Emigrant elements based solely on its TIR sequence. Our results show that different bursts of amplification of one or very few active, or master, elements have occurred at different times during Arabidopsis evolution, with an insertion dynamics similar to that of some SINEs. The analysis of the insertion sites of the Emigrant elements show that, although Emigrant elements tend to integrate far from ORFs, the elements inserted within or close to genes are preferentially maintained during evolution.Postprint (published version
    corecore