249,964 research outputs found
When Mobile Blockchain Meets Edge Computing
Blockchain, as the backbone technology of the current popular Bitcoin digital
currency, has become a promising decentralized data management framework.
Although blockchain has been widely adopted in many applications, e.g.,
finance, healthcare, and logistics, its application in mobile services is still
limited. This is due to the fact that blockchain users need to solve preset
proof-of-work puzzles to add new data, i.e., a block, to the blockchain.
Solving the proof-of-work, however, consumes substantial resources in terms of
CPU time and energy, which is not suitable for resource-limited mobile devices.
To facilitate blockchain applications in future mobile Internet of Things
systems, multiple access mobile edge computing appears to be an auspicious
solution to solve the proof-of-work puzzles for mobile users. We first
introduce a novel concept of edge computing for mobile blockchain. Then, we
introduce an economic approach for edge computing resource management.
Moreover, a prototype of mobile edge computing enabled blockchain systems is
presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin
Communication-Aware Computing for Edge Processing
We consider a mobile edge computing problem, in which mobile users offload
their computation tasks to computing nodes (e.g., base stations) at the network
edge. The edge nodes compute the requested functions and communicate the
computed results to the users via wireless links. For this problem, we propose
a Universal Coded Edge Computing (UCEC) scheme for linear functions to
simultaneously minimize the load of computation at the edge nodes, and maximize
the physical-layer communication efficiency towards the mobile users. In the
proposed UCEC scheme, edge nodes create coded inputs of the users, from which
they compute coded output results. Then, the edge nodes utilize the computed
coded results to create communication messages that zero-force all the
interference signals over the air at each user. Specifically, the proposed
scheme is universal since the coded computations performed at the edge nodes
are oblivious of the channel states during the communication process from the
edge nodes to the users.Comment: To Appear in ISIT 201
Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing
With the rapid development of smart phones, enormous amounts of data are generated and usually require intensive and real-time computation. Nevertheless, quality of service (QoS) is hardly to be met due to the tension between resourcelimited (battery, CPU power) devices and computation-intensive applications. Mobileedge computing (MEC) emerging as a promising technique can be used to copy with stringent requirements from mobile applications. By offloading computationally intensive workloads to edge server and applying efficient task scheduling, energy cost of mobiles could be significantly reduced and therefore greatly improve QoS, e.g., latency. This paper proposes a joint computation offloading and prioritized task scheduling scheme in a multi-user mobile-edge computing system. We investigate an energy minimizing task offloading strategy in mobile devices and develop an effective priority-based task scheduling algorithm with edge server. The execution time, energy consumption, execution cost, and bonus score against both the task data sizes and latency requirement is adopted as the performance metric. Performance evaluation results show that, the proposed algorithm significantly reduce task completion time, edge server VM usage cost, and improve QoS in terms of bonus score. Moreover, dynamic prioritized task scheduling is also discussed herein, results show dynamic thresholds setting realizes the optimal task scheduling. We believe that this work is significant to the emerging mobile-edge computing paradigm, and can be applied to other Internet of Things (IoT)-Edge applications
Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing
Mobile edge computing (a.k.a. fog computing) has recently emerged to enable
in-situ processing of delay-sensitive applications at the edge of mobile
networks. Providing grid power supply in support of mobile edge computing,
however, is costly and even infeasible (in certain rugged or under-developed
areas), thus mandating on-site renewable energy as a major or even sole power
supply in increasingly many scenarios. Nonetheless, the high intermittency and
unpredictability of renewable energy make it very challenging to deliver a high
quality of service to users in energy harvesting mobile edge computing systems.
In this paper, we address the challenge of incorporating renewables into mobile
edge computing and propose an efficient reinforcement learning-based resource
management algorithm, which learns on-the-fly the optimal policy of dynamic
workload offloading (to the centralized cloud) and edge server provisioning to
minimize the long-term system cost (including both service delay and
operational cost). Our online learning algorithm uses a decomposition of the
(offline) value iteration and (online) reinforcement learning, thus achieving a
significant improvement of learning rate and run-time performance when compared
to standard reinforcement learning algorithms such as Q-learning. We prove the
convergence of the proposed algorithm and analytically show that the learned
policy has a simple monotone structure amenable to practical implementation.
Our simulation results validate the efficacy of our algorithm, which
significantly improves the edge computing performance compared to fixed or
myopic optimization schemes and conventional reinforcement learning algorithms.Comment: arXiv admin note: text overlap with arXiv:1701.01090 by other author
- …
