100,076 research outputs found

    Mobile applications for open display networks : common design considerations

    Get PDF
    Mobile devices can be a powerful tool for interaction with public displays, but mobile applications supporting this form of interaction are not yet part of our everyday reality. There are no widely accepted abstractions, standards, or practices that may enable systematic interaction between mobile devices and public displays. We envision public displays to move away from a world of closed display networks to scenarios where mobile applications could allow people to interact with the myriad of displays they might encounter during their everyday trips. In this research, we study the key processes involved in this collaborative interaction between public shared displays and mobile applications. Based on the lessons learned from our own development and deployment of 3 applications, and also on the analysis of the interactive features described in the literature, we have identified 8 key processes that may shape this form of interaction: Discovery, Association, Presence Management, Exploration, Interface Migration, Controller, Media Upload and Media Download. The contribution of this work is the identification of these high-level processes and an elicitation of the main design considerations for display networks.(undefined

    COSC: Paths with Combined Optimal Stability and Capacity in Opportunistic Networks

    Get PDF
    Opportunistic networks are characterized by the dynamic connectivity created when mobile devices encounter each other, as they are within close proximity. During these transient opportunities, devices are typically within one-hop wireless range of their neighbors. Opportunistic networks are an effective way, in terms of bandwidth and battery consumption to distribute large volume content among peers. Many existing proposals consider opportunistic networks as a best-effort content delivery approach, which limits their applications. We exploit characteristics of human mobility to derive an effective data forwarding scheme that achieves Combined Optimal Stability and Capacity (COSC) for opportunistic networks. COSC includes a path selection algorithm to maximize the utility of link capacity and stability. We validate theoretical findings with rigorous simulation studies using synthetic and real-world mobility traces. When compared with other approaches, COSC shows significant improvement due to the consideration of link capacity and stability

    On the Relation Between Mobile Encounters and Web Traffic Patterns: A Data-driven Study

    Full text link
    Mobility and network traffic have been traditionally studied separately. Their interaction is vital for generations of future mobile services and effective caching, but has not been studied in depth with real-world big data. In this paper, we characterize mobility encounters and study the correlation between encounters and web traffic profiles using large-scale datasets (30TB in size) of WiFi and NetFlow traces. The analysis quantifies these correlations for the first time, across spatio-temporal dimensions, for device types grouped into on-the-go Flutes and sit-to-use Cellos. The results consistently show a clear relation between mobility encounters and traffic across different buildings over multiple days, with encountered pairs showing higher traffic similarity than non-encountered pairs, and long encounters being associated with the highest similarity. We also investigate the feasibility of learning encounters through web traffic profiles, with implications for dissemination protocols, and contact tracing. This provides a compelling case to integrate both mobility and web traffic dimensions in future models, not only at an individual level, but also at pairwise and collective levels. We have released samples of code and data used in this study on GitHub, to support reproducibility and encourage further research (https://github.com/BabakAp/encounter-traffic).Comment: Technical report with details for conference paper at MSWiM 2018, v3 adds GitHub lin

    PROTECT: Proximity-based Trust-advisor using Encounters for Mobile Societies

    Full text link
    Many interactions between network users rely on trust, which is becoming particularly important given the security breaches in the Internet today. These problems are further exacerbated by the dynamics in wireless mobile networks. In this paper we address the issue of trust advisory and establishment in mobile networks, with application to ad hoc networks, including DTNs. We utilize encounters in mobile societies in novel ways, noticing that mobility provides opportunities to build proximity, location and similarity based trust. Four new trust advisor filters are introduced - including encounter frequency, duration, behavior vectors and behavior matrices - and evaluated over an extensive set of real-world traces collected from a major university. Two sets of statistical analyses are performed; the first examines the underlying encounter relationships in mobile societies, and the second evaluates DTN routing in mobile peer-to-peer networks using trust and selfishness models. We find that for the analyzed trace, trust filters are stable in terms of growth with time (3 filters have close to 90% overlap of users over a period of 9 weeks) and the results produced by different filters are noticeably different. In our analysis for trust and selfishness model, our trust filters largely undo the effect of selfishness on the unreachability in a network. Thus improving the connectivity in a network with selfish nodes. We hope that our initial promising results open the door for further research on proximity-based trust
    • …
    corecore