4,659 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    A Socially-Aware Incentive Mechanism for Mobile Crowdsensing Service Market

    Full text link
    Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, in order to effectively and efficiently recruit sufficient MUs, i.e., participants, we investigate an optimal reward mechanism of the monopoly Crowdsensing Service Provider (CSP). We model the rewarding and participating as a two-stage game, and analyze the MUs' participation level and the CSP's optimal reward mechanism using backward induction. At the same time, the reward is designed taking the underlying social network effects amid the mobile social network into account, for motivating the participants. Namely, one MU will obtain additional benefits from information contributed or shared by local neighbours in social networks. We derive the analytical expressions for the discriminatory reward as well as uniform reward with complete information, and approximations of reward incentive with incomplete information. Performance evaluation reveals that the network effects tremendously stimulate higher mobile participation level and greater revenue of the CSP. In addition, the discriminatory reward enables the CSP to extract greater surplus from this Crowdsensing service market.Comment: 7 pages, accepted by IEEE Globecom'1

    Differential Private Data Collection and Analysis Based on Randomized Multiple Dummies for Untrusted Mobile Crowdsensing

    Get PDF
    Mobile crowdsensing, which collects environmental information from mobile phone users, is growing in popularity. These data can be used by companies for marketing surveys or decision making. However, collecting sensing data from other users may violate their privacy. Moreover, the data aggregator and/or the participants of crowdsensing may be untrusted entities. Recent studies have proposed randomized response schemes for anonymized data collection. This kind of data collection can analyze the sensing data of users statistically without precise information about other users\u27 sensing results. However, traditional randomized response schemes and their extensions require a large number of samples to achieve proper estimation. In this paper, we propose a new anonymized data-collection scheme that can estimate data distributions more accurately. Using simulations with synthetic and real datasets, we prove that our proposed method can reduce the mean squared error and the JS divergence by more than 85% as compared with other existing studies
    corecore