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Abstract—Mobile crowdsensing, which collects environmental
information from mobile phone users, is growing in popularity.
These data can be used by companies for marketing surveys
or decision making. However, collecting sensing data from other
users may violate their privacy. Moreover, the data aggregator
and/or the participants of crowdsensing may be untrusted enti-
ties. Recent studies have proposed randomized response schemes
for anonymized data collection. This kind of data collection can
analyze the sensing data of users statistically without precise in-
formation about other users’ sensing results. However, traditional
randomized response schemes and their extensions require a large
number of samples to achieve proper estimation. In this paper,
we propose a new anonymized data-collection scheme that can
estimate data distributions more accurately. Using simulations
with synthetic and real datasets, we prove that our proposed
method can reduce the mean squared error and the JS divergence
by more than 85% as compared to other existing studies.

Index Terms—mobile crowdsensing, privacy, data mining.

I. INTRODUCTION

Owing to the development of ubiquitous computing and
sensing technologies, numerous research methods for crowd-
sensing have been proposed to collect and analyze sensed
environmental information from mobile phone users [1]. In
the crowdsensing, individuals collectively share environmental
data with a data aggregator, and the aggregator analyzes
the collected data for decision making or marketing surveys.
However, sensing aspects of a crowdsensing participant’s
surrounding environment, such as radiation level and location,
may involve information that identifies an individual, and thus
private information may be leaked.

A lot of studies have been proposed for privacy-preserving
data aggregation. However, most of them require an a priori
estimate of the fraction of malicious participants. In crowd-
sensing, it is difficult for each participant to know how many
participants there are.

Randomized response (RR) [2] is a promising method for
anonymized data collection. It can protect each participant’s
data even if the aggregator and N − 1 of N participants
collude with each other. In RR, a sensed value is categorized
as one of the predefined categories. That category is replaced
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by another category with certain probability, and then the
disguised category is sent to the aggregator. Because the
participant sends the true data to the server with probability
p and the disguised data to the server with probability 1− p,
the privacy of the participant is protected at a certain level.

All methods of existing RR schemes generate and report one
disguised value from one sensed value. In contrast, we propose
two methods: Single to Randomized Multiple Dummies (S2M)
and S2M with Bayes (S2Mb), both of which generate a set
of disguised values from one sensed value for anonymization.
This concept is simple and novel. S2M and S2Mb consist
of not only this anonymization algorithm, but also an algo-
rithm that reconstructs the true data distribution—that is, an
algorithm that generates an estimated contingency table (also
called a cross tabulation or a multi-dimensional histogram) at
the aggregator.

We use as the privacy metric ϵ-differential privacy [3],
which is one of the most promising privacy models in privacy-
preserving data mining.

Further, we propose an algorithm that calculates optimized
values of the parameters that constitute S2M and S2Mb.
The optimized parameters satisfy ϵ-differential privacy and
minimize the expected values of Mean Squared Errors (MSE)
and Jensen-Shannon (JS) divergence, which are the popular
utility metrics.

In summary, our contributions are as follows: we propose
S2M and S2Mb, both of which can make a better trade-off
between privacy and utility; we propose an algorithm that
calculates the expected MSE and optimized parameters of
S2M and S2Mb; and we give the implementation results of
synthetic and real datasets and prove that S2M and S2Mb
outperform existing RR schemes. In the proposed method, the
aggregator in crowdsensing systems can be used to estimate
data distributions more accurately than other randomization
methods. Moreover, the participants do not need to confirm
the fraction of malicious participants.

The rest of this paper is organized as follows. Section II
presents the application and attack models and defines privacy
and utility as used in this study. Section III discusses the re-
lated methods. Section IV presents the design of our algorithm,
and Section V presents the parameter optimization. Section
VI presents the results of our simulations using synthetic and
real datasets. Section VII discusses several design issues in
our method. Section VIII concludes the paper.
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Fig. 1. Application model

II. MODELS

A. Application Model

Participants of crowdsensing perceive their surrounding
environment through their mobile phones, and the mobile
phones send the sensed data (e.g. radiation level, location)
to the aggregator (Figure 1). We assume that the aggregator
reconstructs the true data distribution, that is, it generates an
estimated contingency table of the sensed data. For this reason,
the aggregator requires categorical attribute values.

In regard to mobile crowdsensing applications, we can
consider the noise, the name of the city that each participant
resides in, and other factors of the participants’ surrounding
environment for urban planning [1], radiation levels [4], or
the speed and type of cars, such as ambulance and taxi (in the
anonymous monitoring of drivers). The data to be collected
might also include personal data such as sex and age.

The process of the mobile crowdsensing application is as
follows. First, the aggregator determines the crowdsensing
application ID and the details of the attributes to be col-
lected. We need the crowdsensing application ID because
several crowdsensing applications may be executed at the same
time and the aggregator should distinguish them. Then, the
aggregator recruits participants. We assume that participants
have an electronic device such as a smartphone and that
they can decide whether or not they will participate in the
crowdsensing application. If a participant agrees to participate
in the crowdsensing application, the smartphone executes
the proposed anonymization algorithm. Finally the aggregator
analyzes the collected data by using proposed S2M or S2Mb.

B. Attack Model

The attack model is the semi-honest adversary model. That
is, the aggregator follows the proposed protocol but tries
to analyze the individual information from each disguised
data. Moreover, the aggregator can run an unlimited number
of emulators that play smartphones. Those emulators can
participate in the arbitrary crowdsensing applications. The

aggregator can assign a certain crowdsensing application ID
to one honest participant and the N − 1 emulators it runs.

In this case, in the crowdsensing, there are one honest
participant and N − 1 emulators that are completely under
the control of the aggregator. It is difficult for the honest
participant to know how many honest participants are in the
same crowdsensing application.

C. Privacy Metric

Differential privacy [3] is one of most important privacy
metrics, and it has been widely studied in data-mining research
publications such as [5], [6]. Suppose that there is a data holder
who is an honest entity and has a database of participants’ true
information, and a data analyst who may be a malicious entity
and wants to use the database. When the data analyzer asks
a query to the database, a randomized mechanism A adds
noise to the query response. Intuitively, differential privacy is
satisfied if the distribution of the output of the mechanism does
not change observably when one participant’s information in
the database is changed.

Let ϵ be a positive real number. More specifically, the
differential privacy is defined as follows:

DEFINITION II.1 (ϵ-differential privacy). Let D and D′

be databases differing on at most one record. A randomized
mechanism A satisfies ϵ-differential privacy if and only if for
all Y ⊂ Range(A), the following equation holds:

P (A(D) ∈ Y ) ≤ eϵP (A(D′) ∈ Y ) for all D,D′.

Kasiviswanathan et al. [7] show that this definition can be
applied to anonymized data collection.

DEFINITION II.2 (local privacy). Let x and x′ be a database
of size = 1, and let ϵ be a positive real number. A randomized
mechanism A satisfies ϵ-differential privacy if and only if for
any output y, the following equation holds:

P (A(x) = y) ≤ eϵP (A(x′) = y) for all x, x′. (1)

D. Utility Metric

The aggregator can generate a contingency table (also called
a cross tabulation or a multi-dimensional histogram) of data
distribution for data analysis. We use as utility metrics MSE
and JS divergence that measure the difference between the
contingency table created from the original data (which is
unknown to the aggregator) and the one estimated by the
aggregator from the reported data.

Let N denote the number of participants, and let
H1,H2, . . . , HF denote each category of sensed data. F
represents the number of data categories. Let xi denote the
number of participants who sensed a value categorized to Hi,
and let x̂i denote the number of participants categorized to Hi

in the reconstructed contingency table at the aggregator.

DEFINITION II.3 (MSE). We use the MSE between x̂i and
xi to quantify the utility for the reconstructed values:

MSE =
1

F

F∑
i=1

(
xi

N
− x̂i

N
)2. (2)
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The Kullback-Leibler (KL) divergence and the JS diver-
gence also have been used as utility metrics in literature.
Because KL divergence cannot be used when the values of the
distribution can be zero, we use JS divergence in this paper.

DEFINITION II.4 (JS divergence). Let PX and P̂X rep-
resent two discrete probability distributions in which the ith
value of them are xi/N and x̂i/N , respectively.

We can use the JS divergence between x̂i and xi to quantify
the utility for the reconstructed values:

JS divergence =
1

2
KL(PX∥R) +

1

2
KL(P̂X∥R),

where R =
1

2
(PX + P̂X),

(3)

where KL divergence is defined as follows:

DEFINITION II.5 (KL divergence). Let P and Q represent
two discrete probability distributions, and let P (i) and Q(i)
represent the ith value of P and Q, respectively.

The KL divergence of Q from P is defined as

KL(P ∥Q) =
∑
i

P (i) log
P (i)

Q(i)
. (4)

E. Problem

Our aim is to anonymize each sensed value to make it
satisfy ϵ-differential privacy and to construct a contingency
table at the aggregator while maintaining a high quality (that is,
minimizing the MSE and/or the JS divergence). This challenge
is defined as follows:

PROBLEM II.6. Given a set of participants U , their sensed
values si (i = 1, . . . , |U |), and a privacy parameter ϵ, find
anonymized values s∗i satisfying ϵ-differential privacy for all i.
Moreover, given the anonymized values s∗i , find reconstructed
values x̂i (i = 1, . . . , F ) that minimize the MSE and the JS
divergence.

III. RELATED WORK

A lot of studies have been proposed for privacy-preserving
data aggregation.

Studies of trusted aggregator schemes have been proposed
widely [8], but they cannot be applied in our situation.

There are other techniques that preserve the privacy of
aggregated data without a loss of utility based on encryption.
Such techniques include [9], [10], [11]. These methods are
categorized as encryption schemes. They assume that the
aggregator is untrusted, but they also assume that the fraction
of participants who collude with the aggregator is at most γ,
which is a predefined parameter. If the aggregator in these
methods colludes with more than γ% of participants, then the
private information of honest participants may be disclosed.
Note that the aggregator can easily generate emulators of
smartphones who collude with it without limitation in mobile
crowdsensing scenarios as described in II-A.

Recently, differential privacy algorithms that can be used
for privacy-preserving data aggregation have been proposed
[12], [13], [14]. These methods assume that the number of

participants who collude with the aggregator is less than γ,
which is the same predefined parameter used in the encryption
schemes. When many participants collude with the aggregator,
we cannot protect the honest participant’s data. Huai et al. [15]
have proposed a method that does not require the predefined
parameter. According to their paper, if there are N partici-
pants and m of N participants collude with the aggregator,
the honest participant’s data is disclosed with probability
m(m − 1)/(N(N − 1)). If the aggregator generates many
emulators of smartphones who collude with it, the probability
that the honest participant’s data is disclosed increases.

Randomized response (RR) schemes can protect each par-
ticipant’s data if the aggregator and N − 1 of N participants
collude with each other. Let H1, . . . , HF denote each category
of sensed data. F represents the number of data categories.
When a participant u’s actual category is Hi, we say that Hi

is u’s true category. When a participant u’s true category is
Hi, the participant’s mobile phone sends a category ID i with
probability p, and a category ID other than Hi with probability
1− p. We say that the category ID sent to the aggregator is a
disguised category.

Let pj,i denote the probability by which a true category Hi

is disguised to a disguised category Hj . This is captured by
the following probability matrix M :

M =

 p
1,1

. . . p
1,F

...
. . .

...
p

F,1
. . . p

F,F

 .

In most RR studies, all pi,i are set to the same p value, and
other elements pj,i (j ≠ i) are set to (1 − p)/(F − 1). We
refer to p as the probability of unchanging category.

Let xi be the number of participants who sensed values
categorized to Hi, let yi be the number of participants who
reported disguised values categorized to Hj . and let x̂i be the
estimated number of participants who sensed values catego-
rized to Hi. We can estimate x̂i by

−→
X̂ = M−1−→Y

where
−→
X̂ = (x̂1, . . . , x̂F )

τ ,
−→
Y = (y1, . . . , yF )

τ ,
(5)

and M−1 is the inverse matrix of M . The resulting
−→
X̂ is an

unbiased maximum likelihood estimation (MLE) of
−→
X [16].

This basic RR scheme is the same as FRAPP (DET),
proposed by Agrawal et al. [2]. In the same paper, they also
proposed another scheme, in which the value of the probability
of unchanging category is determined randomly. This scheme
is called FRAPP (RAN). Rizvi et al. proposed MASK [17]
not for categorical attributes but for boolean attributes.

The above schemes use the MLE technique. Alternatively,
the aggregator can reconstruct the distribution of categories
based on the Bayes technique introduced in [18]. We call this
scheme PRO. PRO can reduce the MSE, in some cases at the
expense of the computational cost of the aggregator.

Groat et al. proposed another scheme, MDN, for multidi-
mensional categories [19], [20]. Let g denote the number of
attributes to be collected. In MDN, we create each proba-
bility matrix M1, . . . ,Mg , where probability of unchanging
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TABLE I
SYMBOLS

N Number of participants
g Number of attributes to be collected
Ai ith attribute to be collected (i = 1, . . . , g)
Fi Domain size of attribute Ai

F
∏g

i=1 Fi

Hi,j jth category of attribute Ai (i = 1, . . . , g, j = 1, . . . , Fi)
Hi ith element of the Cartesian product (H1,1, . . . , H1,F1

)× . . .×
(Hg,1, . . . , Hg,Fg )

xi Number of participants who sensed a value categorized to Hi (i =
1, . . . ,

∏g
j=1 Fj )

x̂i Number of participants categorized to Hi in the reconstructed
contingency table at the aggregator

s Number of category IDs to be reported in the proposed method
p Probability that the original category ID is reported in the proposed

method
q (s− p)/(F − 1)
ϵ Privacy parameter of ϵ-differential privacy
wi Number of reported sets that contain category ID i

categories are all zeros for each attribute, and then calculate
M ′ = (((M1⊗M1)⊗M3) . . .⊗Mg) where ⊗ is the Kronecker
product operator.

Erlingsson et al. [21] proposed RAPPOR. Kairouz et al.
[22] analyzed the two algorithms; k-ary RR and RAPPOR,
and proposed O-RR and O-RAPPOR, which extend k-ary RR
and RAPPOR, respectively. Note that k-ary RR is the same
as PRO in this paper. O-RAPPOR outperforms k-ary RR,
RAPPOR, and O-RR in the usual value range of ϵ (i.e., from
0.1 to 1.0). O-RAPPOR uses Bloom filters [23] which form
an efficient data structure and reduce the domain space. O-
RAPPOR changes each Bloom filter value at random so that
it can protect the participants’ data.

There are several other schemes for RR. Chaytor et al. pro-
posed Perturbation Partitioning (PP) [24] for a situation where
a data holder has all original participant data. Evfimievski et
al. [25] proposed RR for transactions (e.g., history of pur-
chase). When the transaction size increases, their method can
anonymize the transactions efficiently. However, they did not
assume that one attribute of a participant has exactly one value.
Moreover, they did not propose an algorithm that generates
contingency tables from the anonymized transactions.

IV. PROPOSED METHOD

Our main symbols are summarized in Table I.

A. Analysis of Randomized Response

If each value yi (i = 1, . . . , F ) is exactly the same as the
value represented by

yj =

F∑
i=1

pj,ixi, (6)

the MSE and the JS divergence are 0 (that is, the utility is max-
imized) because we use the maximum likelihood estimation.
However, because the disguised category ID is determined in
a probabilistic way, an actual value of yi is different from the
“ideal” value represented by (6) in most cases.

For example, assume that there are 100 participants and that
the number of categories F is 11. Assume that the value of
the probability of unchanging category is 0.5 and pj,k (j ̸= k)
of the probability matrix is (1− 0.5)/10 = 0.05, and assume
that all participants’ true categories are H1 for simplicity. In
this case, we have x1 = 100. The “ideal” value of y1 is 100
× 0.5 = 50, and yi (s.t. i ̸= 1) is 5. We can calculate x̂i from
values of yi using (5). We get x̂1 = 100, and x̂i (s.t. i ̸= 1) is
0. The estimated values x̂i are exactly the same as the original
values xi; therefore, MSE and JS divergence are 0.

Unfortunately, there is not much likelihood of each yi
becoming the ideal value. If y1 = 40 and yi (s.t. i ̸= 1) =
6, for example, we get x̂1 ≈ 77.8 and x̂i (s.t. i ̸= 1) ≈ 2.22.
The resulting MSE is 0.0049.

If we can ensure that the actual value yi is more ideal, we
can reduce the MSE and the JS divergence. In existing RR
schemes, each participant sends one randomized category ID
to the aggregator. If we can increase the number of reported
category IDs, the difference between the distribution of the
actual reported category IDs and the “ideal” distribution of
reported category IDs decreases, based on the law of large
numbers. In contrast, if each participant sends more than one
category ID, the privacy protection level falls to a low level. In
this study, we analyze the tradeoff between utility and privacy,
and then we introduce the optimal values of each that can make
the best trade-off.

B. The Anonymization Algorithm

We assume that each participant installs a smartphone
application for anonymized data collection provided by the ag-
gregator. If the participant agrees to join mobile crowdsensing,
the application’s anonymization algorithm of the application
starts.

The application (i.e., the node) receives the details of the
attributes to be collected, their category definitions, and pa-
rameters s and p, which are necessary to execute the proposed
anonymization algorithm, from the aggregator.

The node senses values such as location and radiation level
from its environment, according to the specified attributes.
When there are g multiple attributes A1, A2, . . . , Ag , we
consider that these attributes are a single attribute with domain
A1×A2× . . .×Ag . In detail, let Fi denote the domain size of
attribute Ai and let Hi,j denote the jth category of attribute
Ai. Let ci represent the sensed category ID of attribute Ai. If
a participant’s sensed categories of attributes A1, . . ., Ag are
H1,c1 , . . . , Hg,cg , the resulting true category is calculated by

ID of true category =

g∑
i=1

(
ci

g∏
k=i+1

Fk

)
.

Let F be
∏

i Fi, and let K be a set of integers from 1 to
F . Let t be the ID of the true category of a participant.

First, the node u creates an empty set Ru. Next, the node
tosses a coin with head probability p. If the coin is head, the
node adds t and s− 1 IDs randomly extracted from K \ {t},
to set Ru. If the coin is tail, the node adds s IDs randomly
extracted from K \ {t} to Ru. Finally, the node u sends the
set Ru to the aggregator.
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We need parameters s and p to execute the node protocol.
The method of determining their values based on the required
privacy level ϵ is described in Section V. The proof that the
anonymization algorithm satisfies ϵ-differential privacy is also
described in Section V.

Example 1. Assume that the aggregator wants to analyze the
radiation level in a certain location, and assume that the level
has five categories. Assume that the parameters s and p are
3 and 0.4, respectively. Assume that the node’s true category
is H2. The node tosses a coin with a head probability of 0.4.
If the coin is the head, the node randomly extracts 2 numbers
from {1, 3, 4, 5} and creates a set containing the extracted
numbers and 2. If the coin is tail, the node randomly extracts
3 numbers from {1, 3, 4, 5} and creates a set containing the
extracted numbers. Finally, the node sends the created set to
the aggregator.

Algorithm 1 shows the node protocol.

Algorithm 1 Node protocol for a participant u
Input: u’s true category ID t, IDs of categories K, Parameters

s and p
Output: Set of anonymized values of a participant u

1: Creates empty set Ru

2: if rand() < p then
3: Ru ⇐ {t} ∪ getRandElements(K \ {t}, s− 1)
4: else
5: Ru ⇐ getRandElements(K \ {t}, s)
6: end if

The function rand() returns a random value between 0.0
and 1.0, and the function getRandElements(B, b) returns b
elements randomly from set B.

C. The Reconstruction Algorithm

1) S2M (Single to Randomized Multiple Dummies) : Let U
denote the set of participants of anonymized data collection.
First, the aggregator counts the reported sets Ru (u ∈ U) that
contain each category ID (i = 1, . . . , F )—that is,

wi =
∑
u∈U

H(Ru, i),where H(Ru, i) ={
1 (Ru contains category ID i)

0 (otherwise).

(7)

If a participant u’s true category is t, t is included in Ru

with probability p. In contrast, f (s.t., f ̸= t) is included in
Ru with probability

q = p · s− 1

F − 1
+ (1− p)

s

F − 1
=

s− p

F − 1
. (8)

Let xi be the actual number of participants whose true
categories are Hi, and let x̂i be the maximum likelihood
estimate of xi. Thus, we have

wi = px̂i + q

F∑
j=1,j ̸=i

x̂j = px̂i + q(N − x̂i).

From this, we have the following equation:

x̂i =
−qN + wi

p− q
. (9)

We show this reconstruction protocol S2M of the aggregator
in Algorithm 2.

Algorithm 2 Aggregator protocol (S2M)
Input: Reported sets, category size F , parameters p and s

(which are determined according to Section V)
Output: Distribution of true categories

1: q ⇐ (s− p)/(F − 1)
2: for i = 1, . . . , F do
3: wi ⇐ result calculated by (7)
4: x̂i ⇐ (−qN + wi)/(p− q)
5: end for
6: return x̂i (i = 1, . . . , F )

Note that if the number of attributes to be collected is more
than one, the category i in Algorithm 2 represents a combi-
nation of categories of the multiple attributes. The category i
in Algorithm 2 represents a combination of categories H1,c1 ,
. . ., Hg,cg where ci is calculated by

ci =

⌊
i∏g

k=i+1 Fk

⌋
(mod Fi). (10)

2) S2Mb (S2M with Bayes): We extend the S2M algorithm
by using Bayes’ technique [26].

Let Ω be a discrete sample space. Let Ai be an event, such
that Ai ⊆ Ω, and let {B1, B2, . . . , BF } be a family of events,
such that

∪
j Bj = Ω and exactly s events in {B1, B2, . . . BF }

always occur at the same time.
In general, we have

Pr(Ai) = Pr(Ai ∩ (

F∪
j=1

Bj)), (11)

because
∪

j Bj = Ω and Ai ⊆ Ω. According to the distributive
law, we have

Pr(Ai ∩ (

F∪
j=1

Bj)) = Pr(

F∪
j=1

(Ai ∩Bj)). (12)

Given that exactly s events in {Ai ∩B1, Ai ∩B2, . . . , Ai ∩
BF } always occur at the same time, we have

Pr(

F∪
j=1

(Ai∩Bj)) =

F∑
j=1

Pr(Ai∩Bj)/s =

F∑
j=1

Pr(Bj)Pr(Ai|Bj)/s.

(13)
Based on Equations 11-13, we have

Pr(Ai) =

F∑
j=1

Pr(Bj)Pr(Ai|Bj)/s. (14)

Let the events of Ai and Bj represent the event where a
user’s true category ID is i and the event where category ID
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j is included in the user’s disguised categories, respectively.
Then, we have Pr(Ai) = x̂i/N , Pr(Bj) = wj/N , and

Pr(Bj |Ai) =

{
p (i = j)

q (otherwise.)
(15)

Moreover, because
∑

k x̂k = sN , we have

F∑
k=1

Pr(Bj |Ak)Pr(Ak) =
1

N
(px̂j +

F∑
k=1,k ̸=j

qx̂k)

=
1

N
(px̂j + q(sN − x̂j)).

(16)

We have

Pr(Ai|Bj) =
Pr(Bj |Ai)P (Ai)∑F

k=1 Pr(Bj |Ak)Pr(Ak)
, (17)

so we get

Pr(Ai) =

F∑
j=1

wj ·
Pr(Bj |Ai)Pr(Ai)

px̂j + q(sN − x̂j)
(18)

from Pr(Bj) = wj/N and Equations 14, 16, and 17.
Let us define Li and Z as

Li =
wi

px̂i + q(sN − x̂i)
, Z =

F∑
j=1

Lj . (19)

Given that
∑

j LjPr(Bj |Ai) = pLi + q(Z − Li), we have

x̂i = x̂i(pLi + q(Z − Li))/s.

Note that the value of Z is not a variable of i.
As a result, we get

x̂i[♯+ 1] ⇐ x̂i[♯] · (pLi + q(Z − Li)) (20)

where an element of x̂i[♯] (i = 1, . . . , F ) represents the
iteration at step ♯. We set an initial value x̂i[0] to wi for all i
and recalculate (20) κ times. We do not determine the value of
κ in advance, but we repeat the calculation until the difference
between the sum of x̂i[♯] and the sum of x̂i[♯+1] is very small.
After repeating κ times, we finally get

x̂i = x̂i[κ]/s. (21)

We show this reconstruction protocol S2Mb of the aggre-
gator in Algorithm 3.

Algorithm 3 Aggregator protocol (S2Mb)
Input: Reported sets, category size F , parameters p and s

(which are determined according to Section V)
Output: Distribution of true categories

1: q ⇐ (s− p)/(F − 1)
2: for i = 1, . . . , F do
3: wi ⇐ result calculated by (7)
4: x̂i ⇐ wi

5: end for
6: for j = 1, . . . , κ do
7: for i = 1, . . . , F do
8: Li ⇐ wi/(px̂i + q(sN − x̂i)
9: end for

10: Z ⇐
∑

i Li

11: for i = 1, . . . , F do
12: x̂i ⇐ x̂i · (pLi + q(Z − Li))
13: end for
14: end for
15: for i = 1, . . . , F do
16: x̂i ⇐ x̂i/s
17: end for
18: return x̂i (i = 1, . . . , F )

As with S2M, if the number of attributes to be collected
is more than one, the category i in Algorithm 3 represents
a combination of categories with multiple attributes. The
category i represents a combination of categories H1,c1 , . . .,
Hg,cg , where ci is calculated by (10).

V. PARAMETER DETERMINATION

A. Optimized parameters for MSE

We introduce a method to choose optimized parameters s
and p that will minimize the expectation of MSE and satisfy
the required privacy level ϵ.

First, we describe the constraints of parameters s and p
based on ϵ. Then, we describe their optimal values in terms
of minimizing the MSE.

1) Constraints of p and s: Suppose that participant u’s true
category ID is t. Let Ru be the set of category IDs to be sent
to the aggregator from participant u.

The probability that Ru contains t and a specified s − 1
elements is represented by

Pt =
p

F−1Cs−1
. (22)

In contrast, the probability that Ru does not contain t but
contains a specified s elements is represented by

Pf =
1− p

F−1Cs
. (23)

Therefore, based on (1), the constraints of values of s and
p based on ϵ are represented by

eϵ≥max

(
Pt

Pf
,
Pf

Pt

)
=max

(
p(F − s)

(1− p)s
,
(1− p)s

p(F − s)

)
. (24)
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2) Expected MSE: Let us introduce a variable w̃i as fol-
lows:

w̃i = pxi + q(N − xi).

If each value of wi is exactly the same as w̃i, the MSE is
exactly 0 because x̂i is the maximum likelihood estimate of
xi.

However, wi and w̃i are different in most cases. Let di
denote the difference between wi and w̃i. In this case, the
reconstructed value x̂i is larger than the actual xi by di/(p−q).
Therefore, when each wi is different from w̃i by di, the MSE
is represented by

MSE =
1

FN2

F∑
i=1

(
di

p− q
)2. (25)

Let E[d2i ] denote the expected value of d2i , and let ri,j
denote the number of reported sets that contain j and have
original value i. Because the number of participants whose
true categories are Hi is xi, the possible range of the value
of ri,j is from 0 to xi. It is most likely that the value of ri,i
is pxi and the value of ri,j (s.t., j ̸= i) is qxi. The expected
squared error value of the difference between the most likely
values and the possible values of ri,j for j = 1, . . . , F can be
represented by
F∑
i=1

E[d2i ] =

F∑
i=1

xi∑
ri,1=0

xi∑
ri,2=0

. . .

xi∑
ri,F=0[

xi
Cri,i · pri,i · (1− p)xi−ri,i

F∏
j=1,j ̸=i

xi
Cri,j · qri,j · (1− q)xi−ri,j

{
(ri,i − pxi)

2 +

F∑
j=1,j ̸=i

(ri,j − qxi)
2
}]

=

F∑
i=1

xi(p− p2 + (F − 1)(q − q2)). (26)

From (25), (26), and N =
∑

i xi, the expected MSE
E[MSE] is represented by

E[MSE] =
(1− F )(p2F + s− (F + 2p)s+ s2)

NF (s− pF )2
. (27)

3) Optimized parameters: We have the following theorem
from (24) and (27).

Theorem V.1. The combinations of s and p that satisfy the
required privacy level ϵ and will minimize the expected MSE
are represented by

s = max

(⌊
F

1 + eϵ

⌋
, 1

)
, p =

eϵs

F − s+ eϵs
. (28)

The proof of Theorem V.1 is described in Appendix A.
We have also the following theorem:

Theorem V.2. The proposed anonymization algorithm where
s and p are determined by (28) satisfies ϵ-differential privacy.

Proof. We prove that

P (A(a database with Hα) = y)

P (A(a database with Hβ) = y)
≤ eϵ, (29)

for any α and β, if the parameters s and p are set based on
(28) and the value of ϵ is greater than 0.

In the anonymization algorithm, a user generates a combi-
nation of s elements from F elements. The probability that a
certain combination is generated is Pt (represented by (22))
or Pf (represented by (23)). Therefore, the possible values of
the left side of (29) are Pt/Pf , Pf/Pt, and 1.

We have the following equation:

Pt

Pf
= p · (s− 1)!(F − s)!

(F − 1)!
· 1

1− p
· (F − 1)!

s!(F − s− 1)!

=
eϵs

F − s+ eϵs
·
{
1/(1− eϵs

F − s+ eϵs
)

}
· F − s

s
= eϵ.

(30)

Therefore, the possible values of the left side of (29) are eϵ,
1/eϵ, and 1. These values are less than or equal to eϵ if the
value of ϵ is greater than 0.

B. Optimized parameters for JS divergence

We have the following theorem:

Theorem V.3. The optimized parameters for the MSE are also
optimal for the JS divergence.

The proof is described in Appendix B.

VI. EVALUATION
We compare our proposed S2M and S2Mb with FRAPP

(DET), FRAPP (RAN), PRO, MDN, and MASK . All exper-
iments were conducted on an Intel Xeon CPU E5-2687W v2
workstation with 128 GB of RAM.

A. Evaluation Settings

1) Existing Studies: In the papers that originally proposed
them, these schemes do not use differential privacy as a privacy
metric. Therefore, we first describe how we calculated the
constraints to satisfy ϵ-differential privacy for each method.

FRAPP (DET): This scheme uses a probability matrix in
which probability of unchanging categories are p and other
elements are (1− p)/(F − 1). The following equation

max

(
p

(1− p)/(F − 1)
,
(1− p)/(F − 1)

p

)
≤ eϵ (31)

should hold to satisfy ϵ-differential privacy. Therefore, we set

p = eϵ/(F − 1− eϵ). (32)

FRAPP (RAN): This scheme uses the probability matrix in
which probability of unchanging categories are p+r and other
elements are (1−p−r)/(F−1), where r is a random variable
uniformly distributed between [−p/2, p/2]. Let t represent
participant u’s true category. The probability that participant
u sends t to the aggregator is p, and the probability that
participant u sends f (s.t., f ̸= t) to the aggregator is∫ p/2

r=−p/2

(
1− p− r

F − 1

)
/p = (1− p)/(F − 1).

Therefore, (31) should be satisfied for ϵ-differential privacy.
Therefore, we set p using (32).
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Fig. 2. Anonymization and reconstruction results of MSE of each data distribution

PRO: Because this scheme uses the same probability matrix
as FRAPP (DET). Therefore, we set p using (32).

MDN: This scheme uses the probability matrix calculated
by M ′ = (((M1⊗M1)⊗M3) . . .⊗Mg), where g is the number
of attributes to be collected and Mi is a probability matrix
of each attribute. In each Mi, the probability of unchanging
categories of Mi are set to pi and other elements are (1 −
pi)/(Fi − 1), where Fi denotes the number of categories of
attribute i. The following equation

max

( ∏g
i=1 pi∏g

i=1(1− pi)/(Fi − 1)
,

∏g
i=1(1− pi)/(Fi − 1)∏g

i=1 pi

)
≤ eϵ

should hold to satisfy ϵ-differential privacy. Therefore, we
calculate each pi by the equation

pi = eϵ/g/(Fi − 1− eϵ/g). (33)

MASK: The original scheme is used for Boolean databases.
In the modified scheme, categorical attributes are converted
into Mb =

∑
i Fi Boolean attributes, where Fi denotes the

number of categories of attribute i. There are Mb bits, and each

bit flips with probability 1−p for anonymization. Because the
original bits of each participant have exactly g 1s, the equation

max

(
p2g

(1− p)2g
,
(1− p)2g

p2g

)
≤ eϵ

should hold to satisfy ϵ-differential privacy. Therefore, we
calculate p by the following equation

p = 1− 1/(1 + eϵ/(2g)).

O-RAPPOR: O-RAPPOR originally uses ϵ-differential pri-
vacy.

2) Multiple attributes and value of ϵ: Let G denote the
set of each domain size of multiple attributes. For example,
assume that radiation level and location are collected by
each participant, and assume that the number of categories
of radiation level is 3 (e.g., Low, Middle, and High) and the
number of categories of location is 50 (e.g., each location
represents one of the states of the United States). In this case,
G = {3, 50}.

Many studies that use differential privacy set ϵ from 0.1 to
1. Therefore, in this paper, we set ϵ from 0.1 to 1.
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Fig. 3. Anonymization and reconstruction results of JS divergence of each data distribution

B. Different typical distribution

First, we evaluated the MSE and the JS divergence using
synthetic datasets. To determine how the results were affected
by different distributions of the data for true category, we
conducted experiments using several distributions.

1) Simulation setting: We used four distributions: Normal,
Uniform, Peak, and Random. In the Uniform, all xi were set
to N/F . In the Normal, the values of xi followed the normal
distribution. In the Peak, all participants had the same true
category, i.e., xa = N for a certain a and xi = 0 (s.t. i ̸= a).
In the Random, each value of xi was determined randomly,
satisfying

∑
i xi = N .

When we conducted experiments with multiple attributes,
we let the distribution of each attribute value follow the
specified distribution.

2) Results of MSE: In the first experiment, we set N =
100, 000 and set G = {10}, {10, 10}, and {10, 10, 10}. The
results are shown in Figure 2. Every scheme was executed 10
times, and its average MSEs are shown. The legend “Math”
represents the expected MSE value of our methods calculated

based on (27). We know from the figures that the expected
MSE value is almost the same as that of S2M, and the MSE
of S2Mb is always less than the expected MSE.

Figures 2(a)-2(d) represent the results of G = {10}. Al-
though there was little difference between schemes, the MSEs
of S2Mb and O-RAPPOR were the lowest among them. All
MSEs decreased as ϵ increased. This is because a large ϵ means
little privacy, and the probability that each participant sends
her/his true category without being changed to the aggregator
is getting larger.

Figures 2(e)-2(h) and Figures 2(i)-2(l) show the results of
G = {10, 10} and G = {10, 10, 10}, respectively. When G
was set to {10, 10} or {10, 10, 10}, the performances of S2Mb
and O-RAPPOR was visibly better than that of other schemes.
We know from the data shown in Figure 2 that the larger the
problem, the more the performances of S2Mb and O-RAPPOR
exceeds those of other schemes.

The MSE calculates the average value of (xi/N − x̂i/N)2.
When the domain size is increasing, the value of (xi/N −
x̂i/N)2 tends to be decreasing because the value of xi
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Fig. 4. Anonymization and reconstruction results with varying the domain size

decreases. Therefore, the MSE decreases as the domain size
increases in Figure 2.

3) Results of JS divergence: The results of the JS diver-
gence are shown in Figure 3. The same as the results of the
MSE, the results of S2Mb outperform the existing studies.
O-RAPPOR uses the probability simplex algorithm [27] to
make the estimated values positive because intermediate values
can be negative. By using the probability simplex algorithm,
the negative intermediate values become zeros. When many
values of the original distribution are small positive values,
many values of the estimated distribution of O-RAPPOR can
be zeros. When we use MSE as a utility metric, the difference
between small positive values and zeros is not as much of
a problem. On the contrary, when we use JS divergence as
a utility metric, the difference has a big impact on the JS
divergence because MSE is low when the rough shapes of the
two distributions are similar, whereas JS divergence is low
when the detailed shapes of the two distributions are similar.
Because S2Mb can maintain the small difference between
the small positive values of the original distribution, S2Mb
outperforms the existing methods.

The reason why the JS divergence of S2Mb and that of

O-RAPPOR are almost the same in the peak distribution is
that the many values of the peak distribution are zeros and
the estimated values of O-RAPPOR are also zeros. On the
contrary, because many values of other distributions are not
zeros, the JS divergence of O-RAPPOR is large in other
distributions.

Although we do not introduce the method of calculating
the expected value of JS divergence, we know from the figure
that the JS divergence tends to decrease as the MSE decreases.
Unlike the results of the MSE, the results of the JS divergence
of S2M are different according to underlying distributions.
However, in all cases, the results of S2Mb realized the highest
accuracy.

4) Results of changing the domain size: We then conducted
an experiment in which we changed the domain size of an
attribute from 10 to 3,000. We set ϵ to 0.5. The results are
shown in Figure 4. When the domain size is increasing, the
MSE tends to be decreasing. Therefore, the MSEs of S2M,
S2Mb, and O-RAPPOR decrease as the domain size increases.
On the contrary, the MSEs of FRAPP (DET), FRAPP (RAN),
MDN, and MASK increase as the domain size increases
because these methods are easily influenced by the domain
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Fig. 5. Results of radiation simulations

size.
With regard to JS divergence, the values of all methods

increase as the domain size increases. Although the JS diver-
gence of S2Mb and that of O-RAPPOR are almost the same
in the peak distribution, S2Mb outperforms existing methods,
including O-RAPPOR, in other distributions.

When the domain size was large, the reconstruction time
for all methods increased. We then conducted an experiment
in which we changed the number of participants (N) from
1,000 to 1,000,000. We had similar results for different values
of N .

We see that the reconstruction times of PRO and S2Mb
largely depend on the domain size. With regards to S2Mb,
the number of iterations was not determined in advance. The
iteration shown in lines 6 to 14 in Algorithm 3 is terminated
when the difference between the sum of x̂i[♯] and the sum of

x̂i[♯ + 1]. The number of iterations seems to depend on the
domain size. However, even if the domain size is 3,000 and
the number of participants is 1,000,000, the calculation time
is only 100 seconds.

C. Smartphone radiation threat detection

Mobile crowdsensing, which is one kind of anonymized data
collection, can help to detect and locate radiation threats in a
city [20]. In this simulation, we assume that mobile phones
are equipped with GPS and radiation monitoring systems.

1) Simulation setting: The main part of Tokyo, Japan, is
administered in 23 special wards that have a total population
of about 9,200,000. We assumed that 100,000 participants,
about 1.1% of the population, would join the crowdsensing.
Each participant’s smartphone senses a radiation level that is
categorized into one of three categories (High, Middle, and
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Low) and senses its location, which is categorized into one of
the 23 special wards. Then, each participant calculates her or
his true category based on the category definitions, anonymizes
the true category, and sends the disguised category to the
aggregator. We set ϵ to 0.5. The ratio of the three radiation
levels in each special ward is randomly determined in advance.

2) Results: The original data distribution is shown in Figure
5(a), and the reconstructed results of the server in each scheme
are shown in Figures 5(b)-5(h).

As illustrated in Figure 5, MDN, MASK, FRAPP (DET),
FRAPP (RAN), and PRO cannot accurately reconstruct the
true data distributions. S2M and O-RAPPOR can reconstruct
with higher precision, but several bins of the histograms differ
greatly from the original bins. On the other hand, S2Mb can
determine the true distribution almost perfectly, although one
bin (Area ID is 3 and the radiation level is low) has an error.
The values of MSE and the JS divergence of S2Mb are 8.32×
10−5 and 0.074, whereas those of O-RAPPOR are 1.25×10−4

and 0.225. Given that many values of the estimated distribution
of O-RAPPOR are zeros, the value of JS divergence of O-
RAPPOR is large.

D. A Real Public Dataset

We evaluated the MSE and the JS divergence by a real
dataset, the Localization dataset [28].

1) Description of dataset: The Localization dataset consists
of 8 attributes and has 164,860 records. We extracted 3 at-
tributes: x coordinate, y coordinate, and activity (e.g., walking,
falling, sitting). The activity has 11 categories. Because x
and y coordinates are numerical values, we divided each of
them into 50 categories in advance. In the resulting database,
G = {50, 50, 11}.

2) Results: Figure 6 shows the results. Every scheme is ex-
ecuted 10 times, and the average MSEs and the JS divergence.

The results are similar to the results of the combination
of the three random distributions shown in Section VI.B
because the ratios of 11 activities can be treated as a random
distribution. The reason why the result of O-RAPPOR is worse
with regard to JS divergence is that many of the values of
the estimated distribution of O-RAPPOR are equal to zero.
Based on the results, we can say that S2Mb can better maintain
the small difference between the small positive values of the
original distribution than other existing studies.

E. Real Smartphone Applications

We implemented our node protocol as a smartphone appli-
cation for Android to verify the feasibility of the protocols. We
measured the time it took for a smartphone to anonymize its
sensed data and send the disguised data. Because our target is a
crowdsensing system, the calculation cost of the randomisation
algorithm conducted in smartphones should be light.

1) Implementation and evaluation setting: We implemented
an Android smartphone application that has functions of sens-
ing the surrounding noise level and location, calculating the
category ID from the sensed data, anonymizing the category
ID, and sending the disguised category ID to the aggregator.
The noise level was categorized into one of 10 categories, and
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Fig. 7. Time required for smartphones.

GPS information was represented as 10 categories of longitude
and 10 categories of latitude.

We used three smartphones that installed the application,
and the smartphones sensed the noise level and their loca-
tion at the University of Electro-Communications campus in
Tokyo. We measured the time it took for the smartphones to
anonymize the sensed data and send the disguised data to the
aggregator. We ignored the time it took to sense the noise level
and location. The aggregator collected 1,000 data in total from
the smartphones with each value of ϵ.

2) Results: The results are shown in Figure 7. The smaller
the ϵ, the longer the time required for anonymization and
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sending the data to the aggregator. This is because a smaller
ϵ means a larger s—that is, when the value of ϵ is small, the
node sends many category IDs to the aggregator.

However, it took less than 0.1 seconds in any of the cases.
We can say based on Figure 7 that our node protocol is
efficient for smartphones. Therefore, participants do not need
to worry about the battery life of their smartphones.

VII. DISCUSSION

A. Different privacy levels among participants

We describe how to estimate the true distribution when the
values of ϵ are different between participants.

We divide participants into groups based on the value of ϵ,
which is determined based on each participant’s required pri-
vacy. Each group has the same value of the privacy parameter
ϵ. Let δ denote the number of groups, let S1, S2, . . . , Sδ denote
each group, and let Nk denote the number of participants of
a group Sk.

We use xk,i to represent the number of participants whose
true category is Hi in participant group Sk. Let x̂k,i denote the
estimated number of participants in category i in participant
group Sk. Although details are omitted due to space limitation,
we have

x̂i = N ×
δ∑

k=1

(
1

E[σ2
k]

× x̂k,i

Nk
)

δ∑
k=1

1

E[σ2
k]
, (34)

where E[σ2
k] represents the estimated MSE calculated from

(27) of participant group Sk.

B. Sensing multiple times at a node

If node IDs can be hidden from the aggregator completely,
nodes can report the anonymized sensed data with satisfying
ϵ-differential privacy at multiple times.

However, if this assumption is not realized, the resulting
privacy level decreases when a node reports the anonymized
sensed data at multiple times. To put it more specifically, when
a node participates in crowdsensing that collects the same
attributes at h times with the privacy parameter being ϵ, the
node privacy is protected by (h × ϵ)-differential privacy. A
larger value of the privacy parameter means a lower protection
of privacy. Note that this characteristic is the same as all other
existing RR schemes.

Therefore, if the node has a plan to participate in the
anonymized data collection that collects the same attributes
at h times and the node wants to be protected by ϵ-differential
privacy, the node should execute the node protocol with (ϵ/h)-
differential privacy.

VIII. CONCLUSION

RR can realize a privacy-preserving mobile crowdsensing
where each participant’s mobile phone probabilistically re-
places the original category of the data with another category.
The replaced category is sent to the aggregator, which attempts
to estimate the distribution of the original categories of partic-
ipants. However, RR schemes require great many samples in

order to achieve proper reconstruction. In this paper, we pro-
pose S2M and S2Mb schemes, which can supersede existing
RR schemes.

By simulations with synthetic and real datasets, we proved
that S2Mb scheme can reduce the estimated errors. The larger
the problem, the more the performance of S2Mb exceeds those
of other schemes.

Future work will include the evaluation of other relevant
datasets. We also plan to extend our approach to include the
database of trajectories of participants’ positions.
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APPENDIX A
PROOF OF THEOREM V.1

Proof. By differentiating (27) with respect to p, we get

∂E[σ2]

∂p
=

2(F − 1)2(s− F )sN

F (pF − s)3
.

From this equation, we know that the expected MSE decreases
with the decreasing p when p < s/F and that it decreases with
the increasing p when s/F ≤ p.

On the other hand, from (24), the combination of s and p
should satisfy the following equation:

(1− p)s

p(F − s)
≤ eϵ (p < s/F ) (35a)

p(F − s)

(1− p)s
≤ eϵ (otherwise) (35b)

The following will be studied in two cases: where p < s/F
and where s/F ≤ p.

Case 1: p < s/F
The left-hand side of (35a) increases with the decreasing p

when p < s/F . Because the expected MSE decreases with the
decreasing p when p < s/F , we can minimize the expected
MSE when (1−p)s/(p(F −s)) is equal to eϵ while satisfying
the required privacy level. By solving the equation

(1− p)s

p(F − s)
= eϵ,

we get
p =

s

eϵF + s− eϵs
.

By substituting this equation into (27), we obtain the
following:

E[σ2] =
N(F − 1)

(1− eϵ)2F (F − s)s
·

(e2ϵ(F − s− 1)(F − s) + 2eϵ(F − s)s+ (s− 1)s).

By differentiating this equation with respect to s, we get

(F − 1)2(−e2ϵ(F − s)2 + s2)N

(1− eϵ)2F (F − s)2s2
.

Therefore, when

s =
eϵF

1 + eϵ
,

the expected MSE is minimized.
Case 2: s/F ≤ p

The left-hand side of (35b) increases with the increasing p
when s/F ≤ p. Because the expected MSE decreases with the
increasing p when s/F ≤ p, we can minimize the expected
MSE when p(F −s)/((1−p)s) is equal to eϵ while satisfying
the required privacy level. By solving the equation

p(F − s)

(1− p)s
= eϵ,

We get

p =
eϵs

F − s+ eϵs
.

By substituting this equation into (27), we obtain the
following:

E[σ2] =
N(F − 1)

(1− eϵ)2F (F − s)s
·

(−F + F 2 + s− 2sF + 2eϵ(F − s)s+ e2ϵ(s− 1)s+ s2).

By differentiating this equation with respect to s, we get

− (F − 1)2((F − s)2 − e2ϵs2)N

(1− eϵ)2F (F − s)2s2
.

Therefore, when

s =
F

1 + eϵ
,

the expected MSE is minimized.
From the two cases above, we have

(s =
F

1 + eϵ
, p =

eϵs

F − s+ eϵs
), or (36)

(s =
eϵF

1 + eϵ
, p =

s

eϵF + s− eϵs
), (37)

for optimizing parameters.
We can use either (36) or (37), but in this paper, we adopt

(36) because we consider that a smaller s is preferable in terms
of data transmission cost from the node to the aggregator.

Finally, because s should be a natural number greater than
or equal to 1, we have (28).

APPENDIX B
PROOF OF THEOREM V.3

Proof. Similar to the analysis of the MSE, let us introduce
di, which represents the difference between wi and w̃i. Let ζi
denote the difference between X̂i and Xi. The value of ζi is
calculated by

ζi = di/(p− q). (38)

The JS divergence is calculated as follows. First, we get
R(i) for each i.

R(i) =
1

2

(
Xi

N
+

Xi + ζi
N

)
. (39)

Then we get

JS divergence =
1

2
KL(PX ,R) +

1

2
KL(P̂X ,R)

=
∑
i

Xi

N
log

2Xi

(2Xi + ζi)
+
∑
i

Xi + ζi
N

log(1 +
ζi

2Xi + ζi
).
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By differentiating this equation with respect to ζi, we get

log(1 +
ζi

ζi + 2Xi
)/N. (40)

From (40), we know that the JS divergence increases along
with the increasing ζi when ζi ≥ 0, and the JS divergence
decreases with the increasing ζi when ζi < 0. That is, the JS
divergence decreases with the decreasing ζ2i .

Therefore, the parameters that minimize the expected value
of
∑

i ζ
2
i can minimize the JS divergence. Because the opti-

mized parameters for MSE minimizes
∑

i ζ
2
i , these parameters

can also minimize the JS divergence.
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