232,422 research outputs found

    A trustworthy mobile agent infrastructure for network management

    Get PDF
    Despite several advantages inherent in mobile-agent-based approaches to network management as compared to traditional SNMP-based approaches, industry is reluctant to adopt the mobile agent paradigm as a replacement for the existing manager-agent model; the management community requires an evolutionary, rather than a revolutionary, use of mobile agents. Furthermore, security for distributed management is a major concern; agent-based management systems inherit the security risks of mobile agents. We have developed a Java-based mobile agent infrastructure for network management that enables the safe integration of mobile agents with the SNMP protocol. The security of the system has been evaluated under agent to agent-platform and agent to agent attacks and has proved trustworthy in the performance of network management tasks

    Migration control for mobile agents based on passport and visa

    Get PDF
    Research on mobile agents has attracted much attention as this paradigm has demonstrated great potential for the next-generation e-commerce. Proper solutions to security-related problems become key factors in the successful deployment of mobile agents in e-commerce systems. We propose the use of passport and visa (P/V) for securing mobile agent migration across communities based on the SAFER e-commerce framework. P/V not only serves as up-to-date digital credentials for agent-host authentication, but also provides effective security mechanisms for online communities to control mobile agent migration. Protection for mobile agents, network hosts, and online communities is enhanced using P/V. We discuss the design issues in details and evaluate the implementation of the proposed system

    Cryptography Based Hybrid Security Architecture for Mobile Multi Agents

    Get PDF
    Distributed Computing is the current area of research. Many researchers are working in area of Distributed Computing and trying to find a solution for the security and other issues. In Distributed Computing the mobile agents are the very important thing. When different mobile agents work in the same environment simultaneously it becomes a very important issue. Mobile agents have automatic, pro-active, and dynamic problem solving behaviors. However, scope of this paper is limited to analyze the existing security approaches for Mobile Multi Agent System. Security issues of mobile agent address the problem of securing and protecting agents from the attack of malicious hosts and other agents as well as securing the host from attack of malicious agents. This paper introduces a new approach of security for agent from other agents. Paper discusses Cryptography Based Hybrid Security Architecture with trust and reputation named CBHSA. It breaks the security of MA in two parts. The first level of security is work on the MA and second level of security is maintained on network. The model CBHSA, its different components and security of MA during movements around the network are discussed in this paper. This paper emphasis on the security of MA’s during migration within the network or outside the network

    Guarding Networks Through Heterogeneous Mobile Guards

    Full text link
    In this article, the issue of guarding multi-agent systems against a sequence of intruder attacks through mobile heterogeneous guards (guards with different ranges) is discussed. The article makes use of graph theoretic abstractions of such systems in which agents are the nodes of a graph and edges represent interconnections between agents. Guards represent specialized mobile agents on specific nodes with capabilities to successfully detect and respond to an attack within their guarding range. Using this abstraction, the article addresses the problem in the context of eternal security problem in graphs. Eternal security refers to securing all the nodes in a graph against an infinite sequence of intruder attacks by a certain minimum number of guards. This paper makes use of heterogeneous guards and addresses all the components of the eternal security problem including the number of guards, their deployment and movement strategies. In the proposed solution, a graph is decomposed into clusters and a guard with appropriate range is then assigned to each cluster. These guards ensure that all nodes within their corresponding cluster are being protected at all times, thereby achieving the eternal security in the graph.Comment: American Control Conference, Chicago, IL, 201

    A Note About the Semantics of Delegation

    Get PDF
    In many applications, mobile agents are used by a client to delegate a task. This task is usually performed by the agent on behalf of the client, by visiting various service provider's sites distributed over a network. This use of mobile agents raises many interesting security issues concerned with the trust relationships established through delegation mechanisms between client and agent, agent and service provider and client and service provider. In this paper we will explain why the traditional semantics of delegation used by existing access control mechanisms, either centralised or distributed, are generally not satisfactory to prevent and detect deception and why these problems are even more critical when these semantics are used in mobile agent paradigms.Non peer reviewe

    Secure e-transactions using mobile agents with agent broker

    Get PDF
    This paper presents an e-transactions protocol using mobile agents. However, when mobile agents travel to a number of servers for searching optimal purchase for the underlying customer, the mobile codes should be protected. We integrate a secure signature algorithm with the e-transaction algorithm to maintain the security. In addition, an agent broker is involved in the algorithm that will help to reduce the communications among the mobile agents, the customer, and the servers. We have presented security and privacy analysis for the proposed protocol

    A Security Architecute for Mobile Agent Based Creeper

    Get PDF
    Mobile agents are active objects that can autonomously migrate in a network to perform tasks on behalf of their owners. Though they offer an important new method of performing transactions and information retrieval in networks, mobile agents also raise several security issues related to the protection of host resources as well as the data carried by an agent itself. Mobile agent technology offers a new computing paradigm in which a program, in the form of a software agent, can suspend its execution on a host computer, transfer itself to another agent-enabled host on the network, and resume execution on the new host. Mobile Agent (MA) technology raises significant security concerns and requires a thorough security framework with a wide range of strategies and mechanisms for the protection of both agent platform and mobile agents against possibly malicious reciprocal behavior. The security infrastructure should have the ability to flexibly and dynamically offer different solutions to achieve different qualities of security service depending on application requirements. The protection of mobile agent systems continues to be an active area of research that will enable future applications to utilize this paradigm of computing. Agent systems and mobile applications must balance security requirements with available security mechanisms in order to meet application level security goals.A security solution has been introduced, which protects both the mobile agent itself and the host resources that encrypt the data before passing it to mobile agent and decrypt it on the visited host sides i.e. it transfers the URL to the Mobile Agent System that will pass that encrypted URL to the server where it will be decrypted and used. The methods of Encryption/Decryption used are a Public-key Cipher System and a Symmetric Cipher System that focuses on submitting data to the server securely. The proposed approach solves the problem of malicious host that can harm mobile agent or the information it contain
    corecore