
A Note About the Semantics of DelegationB. Crispo1 and B. Christianson21 University of Cambridge, England fbc201@cl.cam.ac.ukg2 University of Hertfordshire, England fB.Christianson@herts.ac.ukgAbstract. In many applications, mobile agents are used by a client todelegate a task. This task is usually performed by the agent on behalfof the client, by visiting various service provider's sites distributed overa network. This use of mobile agents raises many interesting securityissues concerned with the trust relationships established through dele-gation mechanisms between client and agent, agent and service providerand client and service provider. In this paper we will explain why thetraditional semantics of delegation used by existing access control mech-anisms, either centralised or distributed, are generally not satisfactoryto prevent and detect deception and why these problems are even morecritical when these semantics are used in mobile agent paradigms.In this paper we will point out the potential problems that may raisewhen existing semantics of delegation are used by agents and we willshow that these problems depend on which trust relationships amongthe entities of the system are assumed.1 Access Control MechanismsAs soon as services and resources are shared among di�erent users, there isthe need for access control policies in order to protect, account and audit theuse of these resources. Access control and the related protection mechanismsto enforce it, have historically been an important area of research for operatingsystem designers. One of the basic mechanisms supported by almost all the accesscontrol mechanisms is delegation. Delegation is an essential feature particularlyin distributed systems where the resources needed by a single user are rarelyall local to the machine where the user is logged on, thus the need to remotelyaccess these resources requires delegation mechanisms. Moreover, the increasingcomplexity of tasks and activities performed by each individual user through theuse of computers, makes it practical to have the possibility to delegate some ofthese tasks and functions to other entities of the system.Mobile agents are the most recent and in some respects most sophisticatedtechnology that can support applications to answer to these needs. Mobile agentsare often used as tools to support users, by carrying out a task on the usersbehalf. Usually this task requires navigation through several di�erent sites dis-tributed over a wide area network and additionally it often requires to invokesome operations on these hosting sites and to eventually store and return theoutput of these operations to the user to whom agents belong.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/29844703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A typical example may be the following: let us suppose we have a cheapest-ights-�nder service that o�ers the service of �nding the cheapest fare and tobook the requested ight on behalf of the customer and o�ers to pay back thecustomer if she succeeds to �nd, the same ight, at a cheaper fare. The ights-�nder asks for an annual subscription for such a service. Let us suppose we havea big company that usually needs to arrange a lot of business ights every year.The company delegates this task to the described cheapest-ights-�nder service.Delegation is necessary because the request is done by the ights-�nder on behalfof the company's employee to whom the ticket will be issued. The airline, chosenby the agent, sells the ticket by issuing the voucher and sending the paymentreceipt to the company's account o�ce.The delegation mechanism used in this example must be able to address sev-eral security concerns. Because of the pay-back option the actions performedby the company (grantor) and by the ights-�nder (grantee) must be distin-guishable by an arbitrator in case of a dispute. Furthermore, it must also beimpossible, or at least computationally infeasible, for the grantor(grantee) toforge without detection operation invocations that use the delegated rights thatbelong to the grantee(grantor). In other words must be possible to detect if thegrantor attempts to fraudulently masquerade as the grantee and vice versa. Thegrantor should not be able to forge the booking request, otherwise she couldalways choose the second cheapest option and then claim her money back fromthe ights-�nder service. We claim that the existing delegation mechanisms failto prevent or detect the frauds just described and in the rest of the paper weexplain in detail, why.2 NotationWe introduce the notation the we will use through this paper. With the termprincipal we denote a generic entity of the system (i.e., program, person, agent,server, etc.). Grantor denotes the principal that delegate and grantee the prin-cipal that has been delegated. The end-point denotes the principal that providethe service that will be requested by using delegation. The end-point is the prin-cipal that �nally will receive a request of service sent by the grantee on behalfof her grantor.We will use the letter K to denote a cryptographic key. In this paper, we willmention only public key cryptography (PK). PK assumes that each principalpossesses a unique cryptographic key pair: a public and a private key, denotedrespectively by K+ and K�. Public keys are public and every principal knowsfor each principal which is the correspondent public key. This knowledge is guar-anteed by certi�cation that here we assume already implemented. The owner ofeach key is denoted by a subscript of her name (i.e., KAlice denotes Alice's key).K+Alice denotes Alice's public key and K�Alice denotes Alice's private key.Each key pair is used by its owner to sign and verify messages. Let us supposeSIG() and VER() to be the signing and the verifying primitives used by thepublic key system. Then C=SIG(M,K�Alice) is the digital signature of Alice over



the message M generated by using the private key K�Alice. The signature C canbe veri�ed by calculating:V ER(C,K+Alice)=V ER(SIG(M,K�Alice),K+Alice)by any principal of the system that eventually receives C and knows Alice'spublic key. The underlying cryptographic algorithm guarantees that the digitalsignature C is unique and can be generated only by using K�Alice and that iscomputationally infeasible to forge without detection the digital signature C forthe message M by knowing only M, C and the public key K+Alice. Of course thesystem also assumes that the private key is never disclosed or shared by theowner with anybody else. Finally 00;00 denotes concatenation.3 Delegation of RightsIn this section we will show that most of the existing delegation mechanisms,such as the ones introduced by Gasser and McDermott [4], Varadharajan et al.[10], Neuman [8], and by Abadi et al. [1, 5] do not consider these possibilitiesof deceptions and frauds if perpetrate by the grantor. Delegation of rights isde�ned asthe process whereby a principal authorises an agent to act on her behalf,by transferring a set of her rights to the agent, possibly for a speci�cperiod of time.where the principal is used to denote a generic entity of the system. This semanticfor delegation allows the transfer of rights but at the same time it assumes thatthe responsibility attached to this rights are always shared or retained by thegrantor. When we say that the principal A is responsible for a particular actionX, we mean that A is the principal that is the most likely to have performedtechnically the action X. Our de�nition of responsibility is for auditing purposesand not for legal ones, because legal issues cannot be solved entirely only bytechnical means but usually need also the support of other, more conventional,forms of evidence (e.g., in paper form). By `most likely' we mean that an unbiasedexternal observer that reviews the history of the system through the audit �lesafter the fact will infer that A has performed X.The delegation of rights semantics given above, assumes that the grantor istrusted not to abuse the capability that she always keeps to exercise the rightsmasquerading as the grantee. The rights are not given away by the grantor to thegrantee but rather they are shared between the two. This strong trust assump-tions on which most of the existing mechanisms rely, can be better understoodby analysing the way in which delegation of rights is implemented.The delegation of rights from the grantor to the grantee is performed byhanding-o� a credential, called a delegation token, whose integrity and possiblysecrecy are assured by cryptographic tools. Digital signatures are used to provideauthenticity and integrity and encryption to provide secrecy if it is required. Thedelegation token speci�es grantor, delegation key, rights that are delegated to



the grantee and possibly the validity period of the token.SIG((Grantor, delegation key+ , Rights, Validity Period), K�Grantor)The delegation key+ is the public key of a key pair whose private key mustbe used by the grantee to exercise the right speci�ed in the token. Thus whenthe ight-�nder agent of our toy example, acting as a grantee on behalf of thecompany will, for example, visit an airline, it will query the airline's database bypresenting a request signed by using the delegation private key followed by thedelegation token she possess as proof that the agent is delegated by the companyto do so.SIG((Grantee, Request), delegation key�), SIG((Grantor, delegation key+,Rights, Validity Period), K�Grantor)The main problem with delegation of rights is that the key pair used asdelegation key pair is generated by the grantor. Then the public key is passed tothe grantee in the delegation token while the private key is passed by the grantorto the grantee by mean of a secure channel established somehow between grantorand grantee. A channel is de�ned as secure if it is secure against passive andactive attacks, thus the information sent through this channel is guaranteed tobe genuine and con�dential. This means that the grantor can always generatethe above request and then falsely claim that it was generated by the granteeinstead. Thus in our example the company can forge booking requests to themost expansive airline as if they were sent by the agent and then claim themoney back to the ight-�nder service on the basis of their agreement. Thus theparticular trust assumptions made by delegation of rights make it impossibleto build auditing mechanisms where is possible irrefutably to distinguish if anaction was really performed by the grantee or performed by the grantor butrecorded in the audit �le as if it was performed by the grantee.4 Delegation of ResponsibilityDelegation of rights assumes that the grantor never cheats on the grantee. De-ceptions and frauds are simply not considered in the threat model envisaged bythe existing mechanisms, that all seem to assume that the attacker is outsidethe system. Tracing clear boundaries in actual distributed open systems whereagents can cross di�erent domains, is certainly a di�cult if not impossible task.The threat model that applications employing mobile agent technology haveto consider, particularly in commercial or �nancial environments should notassume that a particular entity of the system must be trusted a priori, butrather should start by applying the principle of the least trust that says thatevery entity of the system may have a reason to lie or misbehave, thus thesecurity mechanisms must consider this threat.



For this reason we introduce a new semantic of delegation that prevent thekind of attacks discussed in the previous section.We call this new type of delegation, delegation of responsibility de�ned as:the process whereby a principal authorises an agent to act on her behalf,possibly for a speci�c period of time, during which it is always possibleto distinguish whether a particular action, among those delegated, wasperformed by the principal or by the agent acting on her behalf.With delegation of responsibility it is always possible to distinguish beyondreasonable doubt if a request was performed by the grantor or by the grantee,because they have no capability to forge each other requests. We will explainmore in detail this claim showing the protocol that we use to implement thisnew semantic of delegation.We introduce an high level description of the protocol that is used to dele-gate a task, 
 from the grantor to the grantee. Let us suppose that 
 is thetask of updating the database D, physically stored and maintained at the remoteend-point X.Grantor �! Grantee: I Grantor, wish to delegate you grantee, task 
.Please let me know which key will you use toperform 
 on my behalf.Grantee �! Grantor: I grantee, will use the private key which signaturescan be veri�ed by delegation key+Grantor �! Grantee: A delegation token T, containingGrantor and Grantee's names, delegation key+ ,
 and the validity period, signed by the Grantorstating that she delegates the Grantee to perform 
on her behalfUpon the successful termination of the above protocol, the grantee can per-form the task of updating D on behalf of the grantor by signing with hisdelegation key� the requests to do so to the end-point X.Grantee �! X: SIG((Grantee, Update D), delegation key�), TT serves as a proof to the end-point X, that the grantee was authorised bythe grantor to perform the updating of D. Because the delegation secret key ischosen by the grantee and its knowledge and/or use is never shared with thegrantor (or anybody else), the above request, for the assumption made by publickey systems, can only be generated by the grantee. Thus the frauds that arepossible with delegation of rights are not possible anymore with delegation ofresponsibility.



5 DiscussionIn this section we focus on the di�erences between the way in which delegation isused in traditional distributed systems (i.e., DSSA described in [3]) and in appli-cations that employ autonomous agents. These di�erences emphasise why withagents is crucial to design delegation mechanisms that minimise the assumptionsof trust.The are mainly two reasons why people need delegation:{ Because the number of tasks that they need to perform personally is so highthat they �nd easier to delegate some of these tasks to other people theychoose{ Because they do not have the competence to perform a task by themselvesbut nevertheless they need the execution of this task. Thus they delegatethis execution to a person or a service that has the necessary competenceMost of the literature in the security area has focussed on the �rst reason.Implicitly in the existing mechanisms that implement delegation of rights, isassumed that the grantor knows personally, because of an already existing re-lationship, the grantee. Besides in many cases the grantor is in a position ofpower over the grantee (i.e., manager and secretary), this also allows the grantorto eventually undo an operation if she is not satis�ed by the way in which hergrantee executed it. Finally most of the time this relationship is within a well de-�ned organisation. These assumptions are reected in the threats model adoptedby these delegation mechanisms that consider only attacks that can be posed byoutsiders of the organisation, while they consider the members of the organisa-tion, grantors and grantees and end-points, indistinguishably all trusted.With agents and even more with agencies [6, 7], people will delegate mo-tivated by the second reason at least as often as for the �rst one. Thus bothreasons must be considered in the threat model. When agents are used to sup-ply the competence that users need but do not have, usually the grantor does nothave previous direct relationships with the grantee besides grantor and granteeusually do not belong to the same organisation. So the grantee is chosen on thebasis of reputation, brand name, recommendation of a friend, but not becauseof direct trust. The grantor is likely to be in a pair relationship with the granteeand not in a position of power over the grantee, and this make much more dif-�cult to undo grantee's action if the grantor is not satis�ed. All these reasonsmake now unaccettable to trust a priori all grantors and grantees of the system.Even de�ning who is inside and who outside the system becames di�cult.Most of the existing delegation mechanisms have been designed for dis-tributed systems typically composed by many general-purpose workstations dis-tributed physically over a local or wide area network and on which users couldlogin to the system, and by a small number of special servers (i.e., a database),colour printers, specialised and expensive hardware. Because this second kindof components of the system were quite expensive they were not available lo-cally to each node of the system but they were located only in one or few nodes



and accessed by any user remotely. With these architectures, if say a user needsto search for some information in a database maintained centrally on a remoteserver, she can delegate the remote database server to do the search on her be-half and then receives the result back from the server. In the above systems,grantors and grantees reside on the same system even if in a distributed fashion.Furthermore usually the strategy used to perform these services once delegatedis well known to both grantors and grantees (i.e., the scheduling policy of theprinter) and the grantor may restrict the set of nodes the grantee is allowedto visit, in performing the delegated task, because they are the only ones thegrantors knows and trusts in some way (i.e., they all are in a particular domain).With agents, especially with intelligent ones [9,2], the conditions are oftenvery di�erent. Usually grantors(clients) do not know in advance (and possi-bly neither afterwards) which strategy is adopted by the grantee(agent) to ex-ecute the task she has delegated to him. When the strategy is unknown to thegrantor(client), grantees(agents) may independently choose through which sitesto \migrate" to achieve their goals on behalf of their grantors, The consequentlack of transparency that this use of agents causes make it even more crucialthe need of delegation mechanisms that do not assume any pre-existing trustrelationship between grantors and grantee in order to avoid the possible attacksdescribed in the previous sections.The environments and the type of applications in which agents are commonlyused, strongly motivate, even more than other paradigms, the necessity of del-egation mechanisms, as the one we introduced, secure against deceptions andfrauds attempted possibly by any entity of the system.6 ConclusionIn this paper we have analysed the security of the existing delegation mecha-nisms, all of which allow to delegate rights but not the responsibility attachedto these rights. We have also described why this mechanisms fail to preventsome class of frauds, typically the ones attempted by the grantor. We have thenintroduced a new semantics of delegation and a protocol to implement it. Oursolution allows to prevent this class of frauds because the cryptographic key usedto exercise the delegated task is generated, known and used only by the granteeand never by the grantor. We described the principles that are at the basis ofour protocol. Many other details must be considered before actually being ableto implement the protocol. Issues as authentication of principals and protectionagainst replay attacks or the man-in-the-middle attacks has been voluntarily leftoutside the scope of this paper because not essential for the sake of our argu-ments . We have �nally analysed the dependencies that exist between systemarchitecture and trust relationships and how they inuence the threat modelthat must be considered by delegation mechanisms. We have also pointed outthat application using agents introduce a new class of security challenges thatmust be considered and addressed during the design of new delegation protocols.



References1. M. Abadi, M. Burrows, B.W. Lampson, and G. Plotkin. A Calculus for AccessControl in Distibuted Systems. ACM Transaction on Programming Languages andSystems, (15):706{734, September 1993.2. M.A. Boden. Agents and Creativity. Communications of ACM, 37(7):117{121,1994.3. M. Gasser, A. Goldstein, C. Kaufman, and B.W. Lampson. The Digital DistributedSystem Security Architecture. In Proc. Of the 1989 National Computer SecurityConference, pages 305{319, October 1989.4. M. Gasser and E. McDermott. An Architecture for Practical Delegation in a Dis-tributed System. In Proceedings of the IEEE Symposium on Security and Privacy,1990.5. B.W. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in Dis-tributed System: Theory and Practice. ACM Transaction on Computer Systems,(10):265{310, November 1992.6. M. Minsky. The Society of Mind. New York, NY; Simon and Schuster., 1985.7. M. Minsky. A Conversation with Marvin Minsky about Agents. Communicationsof ACM, 37(7):23{29, 1994.8. B.C. Neuman. Proxy-Based Authorization and Accounting for Distributed System.In Proceedings of the 13th International Conference on Distributed Systems, May1993.9. D. Riecken. M: An Architecture of Integrated Agents. Communications of ACM,37(7):107{116, 1994.10. V.Varadharajan, P. Allen, and S. Black. An Analysis of the Proxy Problem in Dis-tributed System. In Proceedings of the IEEE Symposium on Security and Privacy,1991.


