2,242 research outputs found
Magnetically Mediated Transparent Conductors: InO doped with Mo
First-principles band structure investigations of the electronic, optical and
magnetic properties of Mo-doped InO reveal the vital role of magnetic
interactions in determining both the electrical conductivity and the
Burstein-Moss shift which governs optical absorption. We demonstrate the
advantages of the transition metal doping which results in smaller effective
mass, larger fundamental band gap and better overall optical transmission in
the visible -- as compared to commercial Sn-doped InO. Similar behavior
is expected upon doping with other transition metals opening up an avenue for
the family of efficient transparent conductors mediated by magnetic
interactions
Application of reverse micelle sol-gel synthesis for bulk doping and heteroatoms Surface Enrichment in Mo-Doped TiO 2 nanoparticles
TiO 2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol-gel method allowing the dispersion of Mo atoms in the TiO 2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N 2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoO x species occurring only at a higher Mo content
Pulse-shape discrimination with PbWO crystal scintillators
The light output, ratio, and pulse shape have been
investigated at C with PbWO crystal scintillators undoped, and
doped by F, Eu, Mo, Gd and S. The fast s and middle s components of scintillation decay were observed for all the samples. Slow
components of scintillation signal with the decay times s and s with the total intensity up to have been recognized for
several samples doped by Molybdenum. We found some indications of a pulse-shape
discrimination between particles and quanta with PbWO (Mo
doped) crystal scintillators.Comment: 12 pages, 5 figures, submitted to NIM
Unconventional approaches to combine optical transparency with electrical conductivity
Combination of electrical conductivity and optical transparency in the same
material -- known to be a prerogative of only a few oxides of post-transition
metals, such as In, Sn, Zn and Cd -- manifests itself in a distinctive band
structure of the transparent conductor host. While the oxides of other elements
with electronic configuration, for example, Mg, Ca, Sc and Al, also
exhibit the desired optical and electronic features, they have not been
considered as candidates for achieving good electrical conductivity because of
the challenges of efficient carrier generation in these wide-bandgap materials.
Here we demonstrate that alternative approaches to the problem not only allow
attaining the transport and optical properties which compete with those in
currently utilized transparent conducting oxides (TCO), but also significantly
broaden the range of materials with a potential of being developed into novel
functional transparent conductors.Comment: Accepted for publicatio
The Effect of Mo Doping on The Charge Separation Dynamics and Photocurrent Performance of BiVO\u3csub\u3e4\u3c/sub\u3e Photoanodes
Doping with electron-rich elements in BiVO4 photoanodes has been demonstrated as a desirable approach for improving their carrier mobility and charge separation efficiency. However, the effect of doping and dopant concentration on the carrier dynamics and photoelectrochemical performance remains unclear. In this work, we examined the effects of Mo doping on the charge separation dynamics and photocurrent performance in BiVO4photoanodes. We show that the photocurrent of BiVO4 photoanodes increases with increasing concentration of the Mo dopant, which can be attributed to both the improved carrier mobility resulting from increased electron density and charge separation efficiency due to the diminishing of trap states upon Mo doping. The effect of doping on the electronic structure, carrier dynamics and photocurrent performance of BiVO4 photoanodes resulting from W and Mo dopants was also compared and discussed in this study. The knowledge gained from this work will provide important insights into the optimization of the carrier mobility and charge separation efficiency of BiVO4 photoanodes by controlling the dopants and their concentrations
Nano-sized Mo- and Nb-doped TiO2 as anode materials for high energy and high power hybrid Li-ion capacitors
Nano-sized Mo-doped titania (Mo0.1Ti0.9O2) and Nb-doped titania (Nb0.25Ti0.75O2) were directly synthesized via a continuous hydrothermal flow synthesis process. Materials characterization was conducted using physical techniques such as transmission electron microscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, Brunauer–Emmett–Teller specific surface area measurements and energy dispersive x-ray spectroscopy. Hybrid Li-ion supercapacitors were made with either a Mo-doped or Nb-doped TiO2 negative electrode material and an activated carbon (AC) positive electrode. Cells were evaluated using electrochemical testing (cyclic voltammetry, constant charge discharge cycling). The hybrid Li-ion capacitors showed good energy densities at moderate power densities. When cycled in the potential window 0.5–3.0 V, the Mo0.1Ti0.9O2/AC hybrid supercapacitor showed the highest energy densities of 51 Wh kg−1 at a power of 180 W kg−1 with energy densities rapidly declining with increasing applied specific current. In comparison, the Nb0.25Ti0.75O2/AC hybrid supercapacitor maintained its energy density of 45 Wh kg−1 at 180 W kg−1 better, showing 36 Wh g−1 at 3200 W kg−1, which is a very promising mix of high energy and power densities. Reducing the voltage window to the range 1.0–3.0 V led to an increase in power density, with the Mo0.1Ti0.9O2/AC hybrid supercapacitor giving energy densities of 12 Wh kg−1 and 2.5 Wh kg−1 at power densities of 6700 W kg−1 and 14 000 W kg−1, respectively
- …
