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Abstract 
Doping with electron-rich elements in BiVO4 photoanodes has been demonstrated as a desirable approach for 
improving their carrier mobility and charge separation efficiency. However, the effect of doping and dopant 
concentration on the carrier dynamics and photoelectrochemical performance remains unclear. In this work, we 
examined the effects of Mo doping on the charge separation dynamics and photocurrent performance in 
BiVO4 photoanodes. We show that the photocurrent of BiVO4 photoanodes increases with increasing 
concentration of the Mo dopant, which can be attributed to both the improved carrier mobility resulting from 
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increased electron density and charge separation efficiency due to the diminishing of trap states upon Mo 
doping. The effect of doping on the electronic structure, carrier dynamics and photocurrent performance of 
BiVO4 photoanodes resulting from W and Mo dopants was also compared and discussed in this study. The 
knowledge gained from this work will provide important insights into the optimization of the carrier mobility 
and charge separation efficiency of BiVO4 photoanodes by controlling the dopants and their concentrations. 
 

Introduction 
The development of efficient photoelectrode materials for the production of carbon-neutral and sustainable fuel 
sources by solar-driven water splitting is an urgent need to meet long-term global energy demands.1–5 Despite the 
tremendous progress achieved towards the development of such photoelectrodes, it still remains a challenging task to 
develop a material that can meet the multiple resource intensive requirements of the solar-driven photocatalytic 
reactions.6–9 This particular challenge results from the oxidative half reaction, i.e. water oxidation to form protons and 
oxygen (OER), which requires a high overpotential and is considered as the bottleneck for artificial photosynthetic 
water splitting. Extensive efforts have thus been devoted to developing efficient photoanode materials for OER in the 
past decade.10–17 

BiVO4, owing to its moderate band gap (2.4 eV),18,19 capability to absorb visible light,20,21 high stability in aqueous 
solution,17,22 as well as its significantly more positive valence band edge than the OER potential,22–24 has become 
the most promising photoanode material. Regardless of its multifold benefits as a photoanode material, the 
performance of bare BiVO4 for OER is not impressive. The key factors that lead to low OER efficiency have been 
ascribed to its poor carrier mobility, low charge separation efficiency, and weak water oxidation kinetics at the 
electrode surface.25–27 Doping with electron-rich elements has been shown as an attractive approach to improve 
the overall OER performance. For example, several studies have demonstrated improved electron mobility and 
photoelectrochemical (PEC) performance by W- and Mo-doping, which has been attributed to the increased 
electron density.18,27–31 In contrast, other studies suggested that doping can introduce trap states and serve as 
recombination centres that enhance the electron–hole recombination, which may decompensate the improved 
carrier mobility.27,32,33 Our recent studies on W-doped BiVO4 photoanodes, however, suggested that the increased 
photocurrent upon W doping is largely attributed to the significant reduction of hole trap states, which inhibit 
the electron–hole pair recombination, while poor carrier mobility still remains as a limiting factor.34 These 
previous studies suggest that doping may exert multiple influences on the electronic properties and charge 
separation efficiency despite its promise for overall OER improvement. 

In order to gain a deep understanding of the doping mechanism in BiVO4 photoanodes, it is necessary to 
examine the effect of doping on the carrier dynamics and OER performance using different dopants other than 
W. In this work, we investigate the effect of Mo doping on the morphology, carrier dynamics, and photocurrent 
performance of BiVO4 photoanodes, as well as the dependence on Mo concentration. The results from these 
fundamental studies were also evaluated in comparison with our previous findings on W-doped 
BiVO4 photoanodes. 
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Experimental 
Materials 
Bismuth(III) nitrate (Bi(NO3)3·5H2O, Ward's Science, Rochester, NY), vanadyl(IV) acetylacetonate (C10H14O5V, Acros 
Organics, Geel, Belgium), ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O, Electron Microscopy Science, 
Hatfield, PA), acetic acid (≥99.7%, Sigma Aldrich, Milwaukee, WI), and acetylacetone (>99.0%, TCI, Portland, OR) were 
used for film synthesis. Sodium sulfate (Na2SO4, Ward's Science) and highly-polished DI H2O showing >16 Megaohm cm 
resistivity were used for electrolyte solution. FTO glass (2 mm thick, Solaronix, Aubonne, Switzerland) was cut to 1.25 × 
2.50 cm dimensions for electrode fabrication. Nitric acid (Sigma Aldrich) and hydrogen peroxide (30%, J. T. Baker, 
Center Valley, PA) were used to make the piranha glass-etching solution. 

Synthesis of Mo/BiVO4 

 

BiVO4 films were prepared as in our previous work by a solution-based method.28,34 The Bi and V precursors (1 : 1 molar 
ratio) were dissolved in acetic acid (4 equivalents) and acetylacetone (1 equivalent), respectively, by sonication. Then, 
the two solutions were mixed and sonicated to make a 0.05 M BiVO4 stock solution with respect to Bi and V. For un-
doped films, the stock solution was diluted to 0.04 M. For Mo-doped films, a 0.04 mM solution of Mo precursor in 
acetic acid was prepared and then added to the BiVO4 stock solution in varying amounts (to obtain 0.2–1.8 mol% with 
respect to BiVO4) along with any necessary amount of acetic acid to bring the final concentration of Mo/BiVO4 to 0.04 
M. Films were prepared by drop-coating onto a piranha-etched glass substrate or cleaned FTO. The films were dried in 
air for 30 minutes and then calcined at 450 °C for 90 minutes in air. After allowing to cool to room temperature slowly, 
films were then utilized for characterization. 

Characterization 
 

Steady-state UV-visible measurements were performed with an HP Agilent 8453 spectrometer. Scanning electron 
microscopy was performed with a JEOL JSM-6510LV operating in the secondary electron mode. X-ray diffraction (XRD) 
was performed using a Rigaku Miniflex II XRD diffractometer (Cu Kα). XRD samples were prepared by removing 
samples from the glass substrate and grinding in methanol for 10 minutes, followed by drying in air. 

Transient absorption spectroscopy (TA) 
 

The TA spectrometer is based on a regenerative amplified Ti–Sapphire laser system (Solstice, 800 nm, <100 fs FWHM, 
3.5 mJ per pulse, 1 kHz repetition rate). The tunable 235–1150 nm pump is generated in TOPAS and the UV-visible 
probe is generated in a translated CaF2 window by white light generation. 315 nm pump pulse (0.35 μJ) was used for 
sample excitation. A Helios ultrafast spectrometer (Ultrafast Systems, LLC) was used for femtosecond TA 
measurements. The film sample was continuously translated to avoid sample degradation. 

Photoelectrochemical cell (PEC) measurements 
 

A custom three-electrode cell with a quartz window for electrode illumination was used for PEC measurements. A 
Ag/AgCl (3 M NaCl) reference electrode and a Pt wire counter electrode were used with a doped or un-doped BiVO4–
FTO working electrode in 0.1 M Na2SO4 (pH 7) electrolyte. A 300 W xenon lamp with an IR-filter (one foot long water 
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filter and an IR filter) and a UV-filter (>400 nm long-pass filter) output was used to illuminate the samples. The power 
density on the sample is 310 mW cm−2. The current density–voltage (J–V) curve was recorded at a 25 mV s−1 scan rate. 
The working electrode was illuminated from either front or back to observe photocurrent differences due to carrier 
transport. 

Results and discussion 
Although Mo-doped BiVO4 films with Mo concentrations varying from 0.2 to 5% were all synthesized, this work will 
focus only on the films with 0.2%, 1.0%, and 1.8% Mo concentrations. This is because the films with Mo concentration 
above 2% show severe surface heterogeneity (Fig. S1a–c, ESI†), preventing our carrier dynamics studies using transient 
absorption spectroscopy, which is one of the core studies in this work. 

The morphologies of un-doped and Mo-doped BiVO4 films with Mo concentrations varying from 0.2%, 1.0%, to 
1.8% were examined by SEM. As shown in Fig. 1, a porous nanostructure was present in all BiVO4 films, while a 
rougher, more disordered structure was observed in the doped films with increasing Mo concentrations. The 
thickness of these films was controlled to be ∼ 2.8 μm (Fig. S1d, ESI†). Fig. 2a compares the XRD patterns of un-
doped and Mo-doped BiVO4 films with different concentrations of Mo. With increasing Mo concentration, the 
splitting of the diffraction peaks at 35°, 46°, and 58° becomes less prominent. These results are consistent with 
previous literature data,34,35 indicating that the structure of Mo/BiVO4 films slightly changes from monoclinic to a 
mixture of monoclinic and tetragonal phases. Previous studies have shown that the bandgap energies for 
BiVO4films with monoclinic and tetragonal phases are 2.4 eV and 2.9 eV, respectively.18 If Mo doping causes 
significant phase transfer from monoclinic to tetragonal structures, one would expect a peak shift in the UV-
visible spectra of Mo-doped films compared to that of un-doped films. However, a negligible shift in the UV-
visible spectra was observed between Mo-doped and un-doped BiVO4 films (Fig. 2b). These results, together with 
the less diffuse XRD patterns36 of Mo-doped films than those of the un-doped BiVO4 film, suggest that Mo-doped 
BiVO4 thin films mostly retain a monoclinic-scheelite structure. 

 

 

 Fig. 1 SEM images of the un-doped BiVO4 film (a) and Mo/BiVO4 films 
with 0.2% (b), 1.0% (c), and 1.8% (d) Mo concentration. 

 

http://pubs.rsc.org/en/content/articlehtml/2016/cp/c6cp06407h#fn1
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c6cp06407h#imgfig1
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c6cp06407h#fn1
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c6cp06407h#imgfig2
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c6cp06407h#cit34
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c6cp06407h#cit18
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c6cp06407h#imgfig2
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c6cp06407h#cit36
http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/CP/c6cp06407h/c6cp06407h-f1_hi-res.gif


 

 

 Fig. 2 (a) XRD patterns of the undoped and Mo-doped BiVO4 films.  
(b) UV-visible absorption spectra of un-doped and Mo-doped BiVO4 films. 

 

 

The effect of Mo concentration on carrier dynamics was examined using femtosecond transient absorption 
spectroscopy (TA). Fig. 3a–c show the TA spectra of Mo/BiVO4 films with 0.2%, 1.0%, and 1.8% Mo 
concentrations, respectively. Similar to the spectral features of the un-doped BiVO4 film published previously,34,37–

40 all Mo/BiVO4 samples exhibit four main features, including two absorption bands centered at 370 nm and 470 
nm, a broad featureless absorption >550 nm, and a negative feature that corresponds to the ground state (GS) 
bleach band. The three absorption bands exhibit a strong probe-wavelength-dependent feature (Fig. S2, ESI†), 
which is consistent with our previous report on the hole trapping process and can be assigned to the trapped 
hole absorption.34Fig. 3d compares the initial TA spectra (at 0.5–1 ps delay time) of un-doped and Mo-doped 
BiVO4 films. These spectra have been normalized at the maximum of the GS bleach band for better comparison. 
It is immediately noticeable that the initial intensities of these hole absorption bands in the Mo-doped films are 
significantly reduced, where more reduction occurs in the films with higher Mo concentrations. These results 
together suggest that the intrinsic hole traps in the un-doped BiVO4 film are reduced due to Mo doping. 
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Fig. 3 Femtosecond TA spectra of 0.2% Mo/BiVO4 (a), 1.0% Mo/BiVO4 (b), and 1.8% Mo/BiVO4 (c). (d)  
The comparison of TA spectra of un-doped and Mo-doped BiVO4 films with different doping concentrations  
at 0.5–1 ps time delay. The comparison of TA kinetic traces at 472 nm (e) and 430 nm (f) for un-doped  
and Mo-doped BiVO4 films with different Mo concentrations. 

 

 

The reduction of hole traps in Mo-doped BiVO4 films is further supported by the diminishing rising component at 
472 nm which has been assigned to the hole trapping process previously.37,39,40 As shown in Fig. 3e, a clear rising 
component was observed in the kinetic trace of the un-doped BiVO4 film. In contrast, this rising component 
becomes slower in 0.2% Mo/BiVO4 and 1.0% Mo/BiVO4 films, and eventually disappears in the 1.8% 
Mo/BiVO4 film. These kinetic traces can be adequately fitted using a multi-exponential function. The kinetic 
traces for un-doped BiVO4, 0.2% Mo/BiVO4, and 1.0% Mo/BiVO4 films can be fitted by a single rise component 
and three decay components, and the kinetic trace of 1.8% Mo/BiVO4 film can be fitted by three decay 
components. The fitting parameters and equations are summarized in Table 1. The obtained time constants for 
the hole trapping process are 2.1 ps, 4.2 ps, and 5.3 ps for un-doped BiVO4, 0.2% Mo/BiVO4, and 1.0% 
Mo/BiVO4 films, respectively, suggesting a retarded hole trapping process with increasing Mo concentration. The 
remaining three decay components can be assigned to the charge recombination process between the trapped 
holes with electrons in the conduction band or electron trap states.37–40 
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Table 1 Fitting parameters for TA kinetics of un-doped BiVO4 and Mo-doped BiVO4 films 

Probe Sample 
(%) 

τ 1, ps (A1, 
%) 

τ 2, ps (A2, 
%) 

τ 3, ps (A3, 
%) 

τ 4, ps (A4, %) 

The 430 nm kinetic traces in Fig. 3f are fitted with . The 472 nm kinetic traces in Fig. 3e are fitted 

with . r indicates the rising component. 

430 nm 0 1.6 (64) 23 (14.5) 874 (15.1) ≫5 
ns 

(6.4) 
                                                       

0.2 2.2 (58.7) 37.7 
(17.0) 

1130 
(12.7) 

(11.5) 
                                                       

1.0 2.2 (45.5) 35.3 
(22.8) 

1130 
(18.9) 

(12.8) 
                                                       

1.8 2.2 (37.2) 49.1 
(24.0) 

1130 
(24.2) 

(13.8) 
                                                       

                                                        
472 nm 0 r2.1 (100) 16.5 

(32.5) 
970 (44.4) ≫5 

ns 
(23.1) 

                                                       

0.2 r4.2 (100) 21.1 
(39.6) 

964 (40.9) (19.5) 
                                                       

1.0 r5.3 (100) 15.6 
(39.7) 

794 (39.7) (20.6) 
                                                       

1.8 
 

5.0 (57.6) 628 (26.8) (15.6) 
                                                       

 

 
In addition to hole trapping dynamics, the effect of Mo doping on the electron dynamics was examined by probing the 
GS bleach kinetics. Fig. 3f compares the GS bleach recovery kinetics (430 nm) for un-doped BiVO4 and Mo-doped 
BiVO4 films. These kinetic traces can all be fit by four-exponential-decay functions with their parameters listed in Table 
1. The fastest time component (τ1 in Table 1), likely resulting from an electron trapping process, increases from 1.6 ps in 
the un-doped BiVO4 film to 2.2 ps in Mo-doped BiVO4 films. The increase of time constant is accompanied by 
decreasing amplitude, suggesting the reduction of the electron trapping process. In addition, the overall GS recovery 
kinetics becomes slower in Mo-doped BiVO4 films, following the order of 1.8% Mo/BiVO4 < 1.0% Mo/BiVO4 < 0.2% 
Mo/BiVO4 < un-doped BiVO4, suggesting that the overall electron–hole recombination is inhibited with the increase of 
Mo concentration. These results imply that Mo doping altered the nature of trap states in BiVO4 films through 
diminishing the hole and electron trapping processes, which together elongate the electron–hole pair lifetime. Due to 
the presence of the long decay component (≫5 ns) which is beyond the TA time window, the electron–hole lifetime 
cannot be quantitatively determined from these fitting parameters. Instead, the electron–hole lifetime was estimated 
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from the half-recovery time of GS bleach, the time when the GS bleach recovers to 50%. The half-recovery lifetimes 
were 2.9, 6.0, 17.2, and 48.5 ps for un-doped BiVO4, 0.2% Mo/BiVO4, 1.0% Mo/BiVO4, and 1.8% Mo/BiVO4 films, 
respectively. 

In addition to the effect of Mo doping on the carrier dynamics of BiVO4 films, the dependence of carrier mobility 
in BiVO4 films on Mo concentration was also examined using linear sweep voltammetry performed under visible 
light illumination. It has been shown that the difference in photocurrents between back- and front-illumination 
is related to the electron mobility because the back-illumination generates excitons close to the FTO back-
contact whereas front-illumination generates excitons primarily at the surface where the electrons need to 
reach the back contact of the electrode.41–43 Therefore, the higher photocurrent from back-illumination than from 
front-illumination suggests that slow electron transport is one of the limiting factors for photocurrent 
generation. For the un-doped BiVO4 sample (Fig. 4a), there is a significant difference in photocurrent when 
illuminated from the front compared to from the back during photocatalysis, where much higher photocurrent 
under back-side illumination was observed, suggesting poor electron mobility in the un-doped BiVO4 sample. It is 
noticeable that this difference becomes smaller with increasing Mo doping level (Fig. 4b–d), suggesting that 
electron mobility improves with increasing Mo doping. Indeed, little difference was observed between front- 
and back-illumination for the 1.8% Mo/BiVO4 film (Fig. 4d), indicating that electron mobility is no longer a 
limiting factor for OER performance with the addition of 1.8% Mo dopant. These findings clearly demonstrate 
that electron mobility in BiVO4 photoanodes is significantly improved upon Mo doping. 

 

 

 Fig. 4 The comparison of photocurrent from back-side- and front-side-illumination for un-doped  
BiVO4 (a), 0.2% Mo/BiVO4 (b), 1.0% Mo/BiVO4 (c), and 1.8% Mo/BiVO4 (d) thin films. 

 

 

With the understanding of the effect of Mo doping on the carrier dynamics and electron mobility of 
BiVO4 photoanodes, we now turn to evaluate the correlation of these properties with OER performance. Fig. 
5 compares the OER photocurrents of the un-doped BiVO4 film and Mo-doped BiVO4 films with different Mo 
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concentrations under back-side illumination. Although not shown, there was negligible current observed for all 
samples without light illumination. In contrast, under light illumination, it is immediately apparent that Mo-
doped photoanodes produce a higher photocurrent than the un-doped BiVO4 photoanode, beginning to diverge 
at overpotentials as low as 0.3 V vs. Ag/AgCl. Despite the little difference in photocurrent between 0.2% and 
1.0% Mo/BiVO4, the overall trend for photocurrent shows an increase with increasing doping concentration, 
where the sample with the highest doping level (1.8% Mo/BiVO4) shows the maximum photocurrent. 

 

 

 Fig. 5 Photocurrent comparison of un-doped BiVO4 and Mo-doped BiVO4 photoanodes  
under back-illumination. 

 

 
Previous studies have shown that the PEC performance of BiVO4 photoanodes is strongly dependent on their 
crystal structure. Kudo and coworkers have found that BiVO4 photoanodes with a monoclinic scheelite structure 
demonstrated much higher photocatalytic activity than those with a tetragonal structure, which has been mainly 
attributed to the enhanced light absorption of the former with a bandgap of 2.4 eV, while the latter have a 
bandgap of 2.9 eV.18,22 According to these findings, one would expect that the change in the BiVO4 structure from 
monoclinic scheelite to tetragonal due to Mo doping would reduce its photocatalytic activity. However, our work 
along with some previous studies34,35 showed improved PEC performance regardless of the change in the crystal 
structure. Given that other factors in addition to the crystal structure can also influence the PEC performance, 
and doping only causes small changes in the crystal structure, we believe that the much higher photocurrent in 
the Mo-doped films is mainly ascribed to the improved electron mobility due to increasing electron density and 
increased carrier lifetime due to diminishing electron and hole trap states, which likely compensates the 
negative effect resulting from crystal structure change. 

Very recently, we have reported the origin of improved charge separation and OER performance of 
BiVO4 photoanodes to be W doping.34 The results showed that the improved photocurrent of BiVO4 is mainly 
attributed to the inhibited electron–hole recombination due to the reduction of trap states, while the carrier 
mobility has little contribution. In contrast, the current study on Mo-doping effect demonstrates that the 
significant improvement in photocurrent can be ascribed to both the increased carrier mobility and charge 
separation efficiency. In order to better understand the doping mechanism in BiVO4 photoanodes and identify 
the appropriate dopants for optimum OER performance, it is necessary to compare the origin of the doping 
effect on the electronic structure, carrier dynamics and photocurrent performance of BiVO4 photoanodes 
resulting from Mo and W dopants. 
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Fig. 6a compares the XRD patterns of 1.8% W/BiVO4 and 1.8% Mo/BiVO4 films. Slightly sharper diffraction peaks 
at 35°, 46°, and 58° were observed for the W/BiVO4 film than for the Mo/BiVO4 film, indicating that 
Mo/BiVO4 more likely retains the monoclinic-scheelite phase than the W/BiVO4 film. This finding was further 
confirmed by their UV-visible spectra, where the spectrum of the W/BiVO4 film is found to be more blue-shifted 
compared to the spectrum of Mo/BiVO4 (Fig. 6b). The possibility of changes in the crystal phase with doping 
necessitates the structural analysis by X-ray absorption spectroscopy, in which the local structure of individual 
atoms can be probed and determined. As shown in Fig. S3–S5 (ESI†), the local structure at both Bi and V centers, 
probed by X-ray absorption spectroscopy (XAS), shows a negligible change in both the oxidation state and the 
local geometry between W/BiVO4 and Mo/BiVO4, although their local structures are different from that of the 
un-doped BiVO4 film.34 These results imply that the change in the ground state electronic structure of BiVO4 films 
due to W or Mo doping are insignificant despite the slightly more monoclinic-scheelite phase in Mo/BiVO4 films 
than in W/BiVO4 films. 

 

 

 Fig. 6 The comparison of XRD patterns (a), UV-visible absorption spectra (b), ground  
state bleach kinetics at 430 nm (c), and photocurrents (d) of 1.8% Mo/BiVO4 and 1.8% W/BiVO4 films. 

 

 
In addition to their ground state electronic structure, the carrier dynamics of 1.8% W/BiVO4 and 1.8% 
Mo/BiVO4 films were also compared. As indicated by the noteworthy reduction of the initial amplitude of TA 
spectra of both doped BiVO4 films compared to the un-doped one (Fig. S6, ESI†), doping caused a substantial 
reduction of hole traps in the doped films. However, the GS bleach recovery in 1.8% Mo/BiVO4 appears to be 
faster than that in 1.8% W/BiVO4 (Fig. 6c), suggesting enhanced electron–hole recombination in the former. This 
result conflicts with the photocurrent measurement, where the photocurrent generated by 1.8% 
Mo/BiVO4 photoanode is much higher than that of 1.8% W/BiVO4 photoanode (Fig. 6d). Given that Mo doping 
caused significantly increased electron mobility in 1.8% Mo/BiVO4 photoanode while W doping caused a limited 
improvement in electron mobility in 1.8% W/BiVO4 photoanode, we therefore attribute the much higher 
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photocurrent in the former to the increased electron mobility upon Mo doping, which compensates its less 
efficient charge separation efficiency. 

Conclusions 
In conclusion, the effect of Mo doping on the carrier dynamics and OER performance of BiVO4 photoanodes was 
investigated. Using transient absorption spectroscopy, we show that both electron and hole traps are reduced upon 
Mo doping, inhibiting the electron–hole recombination. The studies of photocurrent measurement using linear sweep 
voltammetry reveal an improved photocurrent with increasing Mo concentration, which is accompanied by the 
significantly enhanced electron mobility. Compared to W-doped BiVO4 photoanodes, despite the enhanced electron–
hole recombination in Mo/BiVO4 photoanodes, the OER photocurrent is much higher in the latter, which can be 
attributed to the significantly improved electron mobility in Mo/BiVO4photoanodes, compensating the less efficient 
charge separation efficiency. These findings provide further understanding of the doping physics in BiVO4 photoanodes 
and will provide important insights into the optimization of OER performance by identifying appropriate dopants and 
dopant concentrations. 
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	Abstract
	Doping with electron-rich elements in BiVO4 photoanodes has been demonstrated as a desirable approach for improving their carrier mobility and charge separation efficiency. However, the effect of doping and dopant concentration on the carrier dynamics and photoelectrochemical performance remains unclear. In this work, we examined the effects of Mo doping on the charge separation dynamics and photocurrent performance in BiVO4 photoanodes. We show that the photocurrent of BiVO4 photoanodes increases with increasing concentration of the Mo dopant, which can be attributed to both the improved carrier mobility resulting from increased electron density and charge separation efficiency due to the diminishing of trap states upon Mo doping. The effect of doping on the electronic structure, carrier dynamics and photocurrent performance of BiVO4 photoanodes resulting from W and Mo dopants was also compared and discussed in this study. The knowledge gained from this work will provide important insights into the optimization of the carrier mobility and charge separation efficiency of BiVO4 photoanodes by controlling the dopants and their concentrations.
	Introduction
	The development of efficient photoelectrode materials for the production of carbon-neutral and sustainable fuel sources by solar-driven water splitting is an urgent need to meet long-term global energy demands.1–5 Despite the tremendous progress achieved towards the development of such photoelectrodes, it still remains a challenging task to develop a material that can meet the multiple resource intensive requirements of the solar-driven photocatalytic reactions.6–9 This particular challenge results from the oxidative half reaction, i.e. water oxidation to form protons and oxygen (OER), which requires a high overpotential and is considered as the bottleneck for artificial photosynthetic water splitting. Extensive efforts have thus been devoted to developing efficient photoanode materials for OER in the past decade.10–17
	BiVO4, owing to its moderate band gap (2.4 eV),18,19 capability to absorb visible light,20,21 high stability in aqueous solution,17,22 as well as its significantly more positive valence band edge than the OER potential,22–24 has become the most promising photoanode material. Regardless of its multifold benefits as a photoanode material, the performance of bare BiVO4 for OER is not impressive. The key factors that lead to low OER efficiency have been ascribed to its poor carrier mobility, low charge separation efficiency, and weak water oxidation kinetics at the electrode surface.25–27 Doping with electron-rich elements has been shown as an attractive approach to improve the overall OER performance. For example, several studies have demonstrated improved electron mobility and photoelectrochemical (PEC) performance by W- and Mo-doping, which has been attributed to the increased electron density.18,27–31 In contrast, other studies suggested that doping can introduce trap states and serve as recombination centres that enhance the electron–hole recombination, which may decompensate the improved carrier mobility.27,32,33 Our recent studies on W-doped BiVO4 photoanodes, however, suggested that the increased photocurrent upon W doping is largely attributed to the significant reduction of hole trap states, which inhibit the electron–hole pair recombination, while poor carrier mobility still remains as a limiting factor.34 These previous studies suggest that doping may exert multiple influences on the electronic properties and charge separation efficiency despite its promise for overall OER improvement.
	In order to gain a deep understanding of the doping mechanism in BiVO4 photoanodes, it is necessary to examine the effect of doping on the carrier dynamics and OER performance using different dopants other than W. In this work, we investigate the effect of Mo doping on the morphology, carrier dynamics, and photocurrent performance of BiVO4 photoanodes, as well as the dependence on Mo concentration. The results from these fundamental studies were also evaluated in comparison with our previous findings on W-doped BiVO4 photoanodes.
	Experimental
	Materials
	Synthesis of Mo/BiVO4
	Characterization
	Transient absorption spectroscopy (TA)
	Photoelectrochemical cell (PEC) measurements

	Bismuth(III) nitrate (Bi(NO3)3·5H2O, Ward's Science, Rochester, NY), vanadyl(IV) acetylacetonate (C10H14O5V, Acros Organics, Geel, Belgium), ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O, Electron Microscopy Science, Hatfield, PA), acetic acid (≥99.7%, Sigma Aldrich, Milwaukee, WI), and acetylacetone (>99.0%, TCI, Portland, OR) were used for film synthesis. Sodium sulfate (Na2SO4, Ward's Science) and highly-polished DI H2O showing >16 Megaohm cm resistivity were used for electrolyte solution. FTO glass (2 mm thick, Solaronix, Aubonne, Switzerland) was cut to 1.25 × 2.50 cm dimensions for electrode fabrication. Nitric acid (Sigma Aldrich) and hydrogen peroxide (30%, J. T. Baker, Center Valley, PA) were used to make the piranha glass-etching solution.
	BiVO4 films were prepared as in our previous work by a solution-based method.28,34 The Bi and V precursors (1/:/1 molar ratio) were dissolved in acetic acid (4 equivalents) and acetylacetone (1 equivalent), respectively, by sonication. Then, the two solutions were mixed and sonicated to make a 0.05 M BiVO4 stock solution with respect to Bi and V. For un-doped films, the stock solution was diluted to 0.04 M. For Mo-doped films, a 0.04 mM solution of Mo precursor in acetic acid was prepared and then added to the BiVO4 stock solution in varying amounts (to obtain 0.2–1.8 mol% with respect to BiVO4) along with any necessary amount of acetic acid to bring the final concentration of Mo/BiVO4 to 0.04 M. Films were prepared by drop-coating onto a piranha-etched glass substrate or cleaned FTO. The films were dried in air for 30 minutes and then calcined at 450 °C for 90 minutes in air. After allowing to cool to room temperature slowly, films were then utilized for characterization.
	Steady-state UV-visible measurements were performed with an HP Agilent 8453 spectrometer. Scanning electron microscopy was performed with a JEOL JSM-6510LV operating in the secondary electron mode. X-ray diffraction (XRD) was performed using a Rigaku Miniflex II XRD diffractometer (Cu Kα). XRD samples were prepared by removing samples from the glass substrate and grinding in methanol for 10 minutes, followed by drying in air.
	The TA spectrometer is based on a regenerative amplified Ti–Sapphire laser system (Solstice, 800 nm, <100 fs FWHM, 3.5 mJ per pulse, 1 kHz repetition rate). The tunable 235–1150 nm pump is generated in TOPAS and the UV-visible probe is generated in a translated CaF2 window by white light generation. 315 nm pump pulse (0.35 μJ) was used for sample excitation. A Helios ultrafast spectrometer (Ultrafast Systems, LLC) was used for femtosecond TA measurements. The film sample was continuously translated to avoid sample degradation.
	A custom three-electrode cell with a quartz window for electrode illumination was used for PEC measurements. A Ag/AgCl (3 M NaCl) reference electrode and a Pt wire counter electrode were used with a doped or un-doped BiVO4–FTO working electrode in 0.1 M Na2SO4 (pH 7) electrolyte. A 300 W xenon lamp with an IR-filter (one foot long water filter and an IR filter) and a UV-filter (>400 nm long-pass filter) output was used to illuminate the samples. The power density on the sample is 310 mW cm−2. The current density–voltage (J–V) curve was recorded at a 25 mV s−1 scan rate. The working electrode was illuminated from either front or back to observe photocurrent differences due to carrier transport.
	Results and discussion
	Although Mo-doped BiVO4 films with Mo concentrations varying from 0.2 to 5% were all synthesized, this work will focus only on the films with 0.2%, 1.0%, and 1.8% Mo concentrations. This is because the films with Mo concentration above 2% show severe surface heterogeneity (Fig. S1a–c, ESI†), preventing our carrier dynamics studies using transient absorption spectroscopy, which is one of the core studies in this work.
	The morphologies of un-doped and Mo-doped BiVO4 films with Mo concentrations varying from 0.2%, 1.0%, to 1.8% were examined by SEM. As shown in Fig. 1, a porous nanostructure was present in all BiVO4 films, while a rougher, more disordered structure was observed in the doped films with increasing Mo concentrations. The thickness of these films was controlled to be ∼ 2.8 μm (Fig. S1d, ESI†). Fig. 2a compares the XRD patterns of un-doped and Mo-doped BiVO4 films with different concentrations of Mo. With increasing Mo concentration, the splitting of the diffraction peaks at 35°, 46°, and 58° becomes less prominent. These results are consistent with previous literature data,34,35 indicating that the structure of Mo/BiVO4 films slightly changes from monoclinic to a mixture of monoclinic and tetragonal phases. Previous studies have shown that the bandgap energies for BiVO4films with monoclinic and tetragonal phases are 2.4 eV and 2.9 eV, respectively.18 If Mo doping causes significant phase transfer from monoclinic to tetragonal structures, one would expect a peak shift in the UV-visible spectra of Mo-doped films compared to that of un-doped films. However, a negligible shift in the UV-visible spectra was observed between Mo-doped and un-doped BiVO4 films (Fig. 2b). These results, together with the less diffuse XRD patterns36 of Mo-doped films than those of the un-doped BiVO4 film, suggest that Mo-doped BiVO4 thin films mostly retain a monoclinic-scheelite structure.
	Fig. 1 SEM images of the un-doped BiVO4 film (a) and Mo/BiVO4 films
	Fig. 2 (a) XRD patterns of the undoped and Mo-doped BiVO4 films. 
	The effect of Mo concentration on carrier dynamics was examined using femtosecond transient absorption spectroscopy (TA). Fig. 3a–c show the TA spectra of Mo/BiVO4 films with 0.2%, 1.0%, and 1.8% Mo concentrations, respectively. Similar to the spectral features of the un-doped BiVO4 film published previously,34,37–40 all Mo/BiVO4 samples exhibit four main features, including two absorption bands centered at 370 nm and 470 nm, a broad featureless absorption >550 nm, and a negative feature that corresponds to the ground state (GS) bleach band. The three absorption bands exhibit a strong probe-wavelength-dependent feature (Fig. S2, ESI†), which is consistent with our previous report on the hole trapping process and can be assigned to the trapped hole absorption.34Fig. 3d compares the initial TA spectra (at 0.5–1 ps delay time) of un-doped and Mo-doped BiVO4 films. These spectra have been normalized at the maximum of the GS bleach band for better comparison. It is immediately noticeable that the initial intensities of these hole absorption bands in the Mo-doped films are significantly reduced, where more reduction occurs in the films with higher Mo concentrations. These results together suggest that the intrinsic hole traps in the un-doped BiVO4 film are reduced due to Mo doping.
	Fig. 3 Femtosecond TA spectra of 0.2% Mo/BiVO4 (a), 1.0% Mo/BiVO4 (b), and 1.8% Mo/BiVO4 (c). (d) 
	The reduction of hole traps in Mo-doped BiVO4 films is further supported by the diminishing rising component at 472 nm which has been assigned to the hole trapping process previously.37,39,40 As shown in Fig. 3e, a clear rising component was observed in the kinetic trace of the un-doped BiVO4 film. In contrast, this rising component becomes slower in 0.2% Mo/BiVO4 and 1.0% Mo/BiVO4 films, and eventually disappears in the 1.8% Mo/BiVO4 film. These kinetic traces can be adequately fitted using a multi-exponential function. The kinetic traces for un-doped BiVO4, 0.2% Mo/BiVO4, and 1.0% Mo/BiVO4 films can be fitted by a single rise component and three decay components, and the kinetic trace of 1.8% Mo/BiVO4 film can be fitted by three decay components. The fitting parameters and equations are summarized in Table 1. The obtained time constants for the hole trapping process are 2.1 ps, 4.2 ps, and 5.3 ps for un-doped BiVO4, 0.2% Mo/BiVO4, and 1.0% Mo/BiVO4 films, respectively, suggesting a retarded hole trapping process with increasing Mo concentration. The remaining three decay components can be assigned to the charge recombination process between the trapped holes with electrons in the conduction band or electron trap states.37–40
	Table 1 Fitting parameters for TA kinetics of un-doped BiVO4 and Mo-doped BiVO4 films
	τ 4, ps (A4, %)
	τ 3, ps (A3, %)
	τ 2, ps (A2, %)
	τ 1, ps (A1, %)
	Sample (%)
	Probe
	The 430 nm kinetic traces in Fig. 3f are fitted with /. The 472 nm kinetic traces in Fig. 3e are fitted with /. r indicates the rising component.
	(6.4)
	≫5 ns
	874 (15.1)
	23 (14.5)
	1.6 (64)
	0
	430 nm
	(11.5)
	1130 (12.7)
	37.7 (17.0)
	2.2 (58.7)
	0.2
	(12.8)
	1130 (18.9)
	35.3 (22.8)
	2.2 (45.5)
	1.0
	(13.8)
	1130 (24.2)
	49.1 (24.0)
	2.2 (37.2)
	1.8
	(23.1)
	≫5 ns
	970 (44.4)
	16.5 (32.5)
	0
	472 nm
	r2.1 (100)
	(19.5)
	964 (40.9)
	21.1 (39.6)
	0.2
	r4.2 (100)
	(20.6)
	794 (39.7)
	15.6 (39.7)
	1.0
	r5.3 (100)
	(15.6)
	628 (26.8)
	5.0 (57.6)
	1.8
	In addition to hole trapping dynamics, the effect of Mo doping on the electron dynamics was examined by probing the GS bleach kinetics. Fig. 3f compares the GS bleach recovery kinetics (430 nm) for un-doped BiVO4 and Mo-doped BiVO4 films. These kinetic traces can all be fit by four-exponential-decay functions with their parameters listed in Table 1. The fastest time component (τ1 in Table 1), likely resulting from an electron trapping process, increases from 1.6 ps in the un-doped BiVO4 film to 2.2 ps in Mo-doped BiVO4 films. The increase of time constant is accompanied by decreasing amplitude, suggesting the reduction of the electron trapping process. In addition, the overall GS recovery kinetics becomes slower in Mo-doped BiVO4 films, following the order of 1.8% Mo/BiVO4 < 1.0% Mo/BiVO4 < 0.2% Mo/BiVO4 < un-doped BiVO4, suggesting that the overall electron–hole recombination is inhibited with the increase of Mo concentration. These results imply that Mo doping altered the nature of trap states in BiVO4 films through diminishing the hole and electron trapping processes, which together elongate the electron–hole pair lifetime. Due to the presence of the long decay component (≫5 ns) which is beyond the TA time window, the electron–hole lifetime cannot be quantitatively determined from these fitting parameters. Instead, the electron–hole lifetime was estimated from the half-recovery time of GS bleach, the time when the GS bleach recovers to 50%. The half-recovery lifetimes were 2.9, 6.0, 17.2, and 48.5 ps for un-doped BiVO4, 0.2% Mo/BiVO4, 1.0% Mo/BiVO4, and 1.8% Mo/BiVO4 films, respectively.
	In addition to the effect of Mo doping on the carrier dynamics of BiVO4 films, the dependence of carrier mobility in BiVO4 films on Mo concentration was also examined using linear sweep voltammetry performed under visible light illumination. It has been shown that the difference in photocurrents between back- and front-illumination is related to the electron mobility because the back-illumination generates excitons close to the FTO back-contact whereas front-illumination generates excitons primarily at the surface where the electrons need to reach the back contact of the electrode.41–43 Therefore, the higher photocurrent from back-illumination than from front-illumination suggests that slow electron transport is one of the limiting factors for photocurrent generation. For the un-doped BiVO4 sample (Fig. 4a), there is a significant difference in photocurrent when illuminated from the front compared to from the back during photocatalysis, where much higher photocurrent under back-side illumination was observed, suggesting poor electron mobility in the un-doped BiVO4 sample. It is noticeable that this difference becomes smaller with increasing Mo doping level (Fig. 4b–d), suggesting that electron mobility improves with increasing Mo doping. Indeed, little difference was observed between front- and back-illumination for the 1.8% Mo/BiVO4 film (Fig. 4d), indicating that electron mobility is no longer a limiting factor for OER performance with the addition of 1.8% Mo dopant. These findings clearly demonstrate that electron mobility in BiVO4 photoanodes is significantly improved upon Mo doping.
	Fig. 4 The comparison of photocurrent from back-side- and front-side-illumination for un-doped 
	With the understanding of the effect of Mo doping on the carrier dynamics and electron mobility of BiVO4 photoanodes, we now turn to evaluate the correlation of these properties with OER performance. Fig. 5 compares the OER photocurrents of the un-doped BiVO4 film and Mo-doped BiVO4 films with different Mo concentrations under back-side illumination. Although not shown, there was negligible current observed for all samples without light illumination. In contrast, under light illumination, it is immediately apparent that Mo-doped photoanodes produce a higher photocurrent than the un-doped BiVO4 photoanode, beginning to diverge at overpotentials as low as 0.3 V vs. Ag/AgCl. Despite the little difference in photocurrent between 0.2% and 1.0% Mo/BiVO4, the overall trend for photocurrent shows an increase with increasing doping concentration, where the sample with the highest doping level (1.8% Mo/BiVO4) shows the maximum photocurrent.
	Fig. 5 Photocurrent comparison of un-doped BiVO4 and Mo-doped BiVO4 photoanodes 
	Previous studies have shown that the PEC performance of BiVO4 photoanodes is strongly dependent on their crystal structure. Kudo and coworkers have found that BiVO4 photoanodes with a monoclinic scheelite structure demonstrated much higher photocatalytic activity than those with a tetragonal structure, which has been mainly attributed to the enhanced light absorption of the former with a bandgap of 2.4 eV, while the latter have a bandgap of 2.9 eV.18,22 According to these findings, one would expect that the change in the BiVO4 structure from monoclinic scheelite to tetragonal due to Mo doping would reduce its photocatalytic activity. However, our work along with some previous studies34,35 showed improved PEC performance regardless of the change in the crystal structure. Given that other factors in addition to the crystal structure can also influence the PEC performance, and doping only causes small changes in the crystal structure, we believe that the much higher photocurrent in the Mo-doped films is mainly ascribed to the improved electron mobility due to increasing electron density and increased carrier lifetime due to diminishing electron and hole trap states, which likely compensates the negative effect resulting from crystal structure change.
	Very recently, we have reported the origin of improved charge separation and OER performance of BiVO4 photoanodes to be W doping.34 The results showed that the improved photocurrent of BiVO4 is mainly attributed to the inhibited electron–hole recombination due to the reduction of trap states, while the carrier mobility has little contribution. In contrast, the current study on Mo-doping effect demonstrates that the significant improvement in photocurrent can be ascribed to both the increased carrier mobility and charge separation efficiency. In order to better understand the doping mechanism in BiVO4 photoanodes and identify the appropriate dopants for optimum OER performance, it is necessary to compare the origin of the doping effect on the electronic structure, carrier dynamics and photocurrent performance of BiVO4 photoanodes resulting from Mo and W dopants.
	Fig. 6a compares the XRD patterns of 1.8% W/BiVO4 and 1.8% Mo/BiVO4 films. Slightly sharper diffraction peaks at 35°, 46°, and 58° were observed for the W/BiVO4 film than for the Mo/BiVO4 film, indicating that Mo/BiVO4 more likely retains the monoclinic-scheelite phase than the W/BiVO4 film. This finding was further confirmed by their UV-visible spectra, where the spectrum of the W/BiVO4 film is found to be more blue-shifted compared to the spectrum of Mo/BiVO4 (Fig. 6b). The possibility of changes in the crystal phase with doping necessitates the structural analysis by X-ray absorption spectroscopy, in which the local structure of individual atoms can be probed and determined. As shown in Fig. S3–S5 (ESI†), the local structure at both Bi and V centers, probed by X-ray absorption spectroscopy (XAS), shows a negligible change in both the oxidation state and the local geometry between W/BiVO4 and Mo/BiVO4, although their local structures are different from that of the un-doped BiVO4 film.34 These results imply that the change in the ground state electronic structure of BiVO4 films due to W or Mo doping are insignificant despite the slightly more monoclinic-scheelite phase in Mo/BiVO4 films than in W/BiVO4 films.
	Fig. 6 The comparison of XRD patterns (a), UV-visible absorption spectra (b), ground 
	In addition to their ground state electronic structure, the carrier dynamics of 1.8% W/BiVO4 and 1.8% Mo/BiVO4 films were also compared. As indicated by the noteworthy reduction of the initial amplitude of TA spectra of both doped BiVO4 films compared to the un-doped one (Fig. S6, ESI†), doping caused a substantial reduction of hole traps in the doped films. However, the GS bleach recovery in 1.8% Mo/BiVO4 appears to be faster than that in 1.8% W/BiVO4 (Fig. 6c), suggesting enhanced electron–hole recombination in the former. This result conflicts with the photocurrent measurement, where the photocurrent generated by 1.8% Mo/BiVO4 photoanode is much higher than that of 1.8% W/BiVO4 photoanode (Fig. 6d). Given that Mo doping caused significantly increased electron mobility in 1.8% Mo/BiVO4 photoanode while W doping caused a limited improvement in electron mobility in 1.8% W/BiVO4 photoanode, we therefore attribute the much higher photocurrent in the former to the increased electron mobility upon Mo doping, which compensates its less efficient charge separation efficiency.
	Conclusions
	In conclusion, the effect of Mo doping on the carrier dynamics and OER performance of BiVO4 photoanodes was investigated. Using transient absorption spectroscopy, we show that both electron and hole traps are reduced upon Mo doping, inhibiting the electron–hole recombination. The studies of photocurrent measurement using linear sweep voltammetry reveal an improved photocurrent with increasing Mo concentration, which is accompanied by the significantly enhanced electron mobility. Compared to W-doped BiVO4 photoanodes, despite the enhanced electron–hole recombination in Mo/BiVO4 photoanodes, the OER photocurrent is much higher in the latter, which can be attributed to the significantly improved electron mobility in Mo/BiVO4photoanodes, compensating the less efficient charge separation efficiency. These findings provide further understanding of the doping physics in BiVO4 photoanodes and will provide important insights into the optimization of OER performance by identifying appropriate dopants and dopant concentrations.
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