210 research outputs found

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Fast Escape from Quantum Mazes in Integrated Photonics

    Get PDF
    Escaping from a complex maze, by exploring different paths with several decision-making branches in order to reach the exit, has always been a very challenging and fascinating task. Wave field and quantum objects may explore a complex structure in parallel by interference effects, but without necessarily leading to more efficient transport. Here, inspired by recent observations in biological energy transport phenomena, we demonstrate how a quantum walker can efficiently reach the output of a maze by partially suppressing the presence of interference. In particular, we show theoretically an unprecedented improvement in transport efficiency for increasing maze size with respect to purely quantum and classical approaches. In addition, we investigate experimentally these hybrid transport phenomena, by mapping the maze problem in an integrated waveguide array, probed by coherent light, hence successfully testing our theoretical results. These achievements may lead towards future bio-inspired photonics technologies for more efficient transport and computation.Comment: 13 pages, 10 figure

    Coined quantum walks on percolation graphs

    Full text link
    Quantum walks, both discrete (coined) and continuous time, form the basis of several quantum algorithms and have been used to model processes such as transport in spin chains and quantum chemistry. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections in the lattice. As a simple example of a disordered system, we consider percolation lattices, in which edges or sites are randomly missing, interrupting the progress of the quantum walk. We use numerical simulation to study the properties of coined quantum walks on these percolation lattices in one and two dimensions. In one dimension (the line) we introduce a simple notion of quantum tunneling and determine how this affects the properties of the quantum walk as it spreads. On two-dimensional percolation lattices, we show how the spreading rate varies from linear in the number of steps down to zero, as the percolation probability decreases to the critical point. This provides an example of fractional scaling in quantum walk dynamics.Comment: 25 pages, 14 figures; v2 expanded and improved presentation after referee comments, added extra figur

    Discrete time quantum walks on percolation graphs

    Get PDF
    Randomly breaking connections in a graph alters its transport properties, a model used to describe percolation. In the case of quantum walks, dynamic percolation graphs represent a special type of imperfections, where the connections appear and disappear randomly in each step during the time evolution. The resulting open system dynamics is hard to treat numerically in general. We shortly review the literature on this problem. We then present our method to solve the evolution on finite percolation graphs in the long time limit, applying the asymptotic methods concerning random unitary maps. We work out the case of one dimensional chains in detail and provide a concrete, step by step numerical example in order to give more insight into the possible asymptotic behavior. The results about the case of the two-dimensional integer lattice are summarized, focusing on the Grover type coin operator.Comment: 22 pages, 3 figure

    Continuous-time quantum walks on one-dimension regular networks

    Full text link
    In this paper, we consider continuous-time quantum walks (CTQWs) on one-dimension ring lattice of N nodes in which every node is connected to its 2m nearest neighbors (m on either side). In the framework of the Bloch function ansatz, we calculate the spacetime transition probabilities between two nodes of the lattice. We find that the transport of CTQWs between two different nodes is faster than that of the classical continuous-time random walk (CTRWs). The transport speed, which is defined by the ratio of the shortest path length and propagating time, increases with the connectivity parameter m for both the CTQWs and CTRWs. For fixed parameter m, the transport of CTRWs gets slow with the increase of the shortest distance while the transport (speed) of CTQWs turns out to be a constant value. In the long time limit, depending on the network size N and connectivity parameter m, the limiting probability distributions of CTQWs show various paterns. When the network size N is an even number, the probability of being at the original node differs from that of being at the opposite node, which also depends on the precise value of parameter m.Comment: Typos corrected and Phys. ReV. E comments considered in this versio

    Symmetry in quantum walks

    Full text link
    A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. We derive an expression for hitting time using superoperators, and numerically evaluate it for the walk on the hypercube for various coins and decoherence models. We show that, by contrast to classical walks, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if a given walk on a graph will have infinite hitting times, and find a sufficient condition for their existence. The phenomenon of infinite hitting times is in general a consequence of the symmetry of the graph and its automorphism group. Symmetries of a graph, given by its automorphism group, can be inherited by the evolution operator. Using the irreducible representations of the automorphism group, we derive conditions such that quantum walks defined on this graph must have infinite hitting times for some initial states. Symmetry can also cause the walk to be confined to a subspace of the original Hilbert space for certain initial states. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph and we give an explicit construction of the quotient graph. We conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speed-up. Finally, we use symmetry and the theory of decoherence-free subspaces to determine when the subspace of the quotient graph is a decoherence-free subspace of the dynamics.Comment: 136 pages, Ph.D. thesis, University of Southern California, 200

    Decoherence and classicalization of continuous-time quantum walks on graphs

    Full text link
    We address decoherence and classicalization of continuous-time quantum walks (CTQWs) on graphs. In particular, we investigate three different models of decoherence, and employ the quantum-classical (QC) dynamical distance as a figure of merit to assess whether, and to which extent, decoherence classicalizes the CTQW, i.e. turns it into the analogue classical process. We show that the dynamics arising from intrinsic decoherence, i.e. dephasing in the energy basis, do not fully classicalize the walker and partially preserves quantum features. On the other hand, dephasing in the position basis, as described by the Haken-Strobl master equation or by the quantum stochastic walk (QSW) model, asymptotically destroys the quantumness of the walker, making it equivalent to a classical random walk. We also investigate the speed of the classicalization process, and observe a faster convergence of the QC-distance to its asymptotic value for intrinsic decoherence and the QSW models, whereas in the Haken-Strobl scenario, larger values of the decoherence rate induce localization of the walker.Comment: 15 pages, 4 figure

    On analog quantum algorithms for the mixing of Markov chains

    Full text link
    The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements. There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd\"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.Comment: The section concerning time-averaged mixing (Sec VIII) has been updated: Now contains numerical plots and an intuitive discussion on the random matrix theory results used to derive the results of arXiv:2001.0630

    Discrete-Time Quantum Walk - Dynamics and Applications

    Get PDF
    This dissertation presents investigations on dynamics of discrete-time quantum walk and some of its applications. Quantum walks has been exploited as an useful tool for quantum algorithms in quantum computing. Beyond quantum computational purposes, it has been used to explain and control the dynamics in various physical systems. In order to use the quantum walk to its fullest potential, it is important to know and optimize the properties purely due to quantum dynamics and in presence of noise. Various studies of its dynamics in the absence and presence of noise have been reported. We propose new approaches to optimize the dynamics, discuss symmetries and effect of noise on the quantum walk. Making use of its properties, we propose the use of quantum walk as an efficient new tool for various applications in physical systems and quantum information processing. In the first and second part of this dissertation, we discuss evolution process of the quantum walks, propose and demonstrate the optimization of discrete-time quantum walk using quantum coin operation from SU(2) group and discuss some of its properties. We investigate symmetry operations and environmental effects on dynamics of the walk on a line and an n-cycle highlighting the interplay between noise and topology. Using the properties and behavior of quantum walk discussed in part two, in part three we propose the application of quantum walk to realize quantum phase transition in optical lattice, that is to efficiently control and redistribute ultracold atoms in optical lattice. We also discuss the implementation scheme. Another application we consider is creation of spatial entanglement using quantum walk on a quantum many body system.Comment: 199 pages, 52 figures, Thesis completed during 2009 at University of Waterloo (IQC), V2 : Index of figures has been made compac
    corecore