49,995 research outputs found

    A note on the Size-Ramsey number of long subdivisions of graphs

    Get PDF
    Let TsH be the graph obtained from a given graph H by subdividing each edge s times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321–328], we prove that, for any graph H, there exist graphs G with O(s) edges that are Ramsey with respect to TsH

    Smoothed Analysis on Connected Graphs

    Get PDF
    The main paradigm of smoothed analysis on graphs suggests that for any large graph G in a certain class of graphs, perturbing slightly the edges of G at random (usually adding few random edges to G) typically results in a graph having much "nicer" properties. In this work we study smoothed analysis on trees or, equivalently, on connected graphs. Given an n-vertex connected graph G, form a random supergraph of G* of G by turning every pair of vertices of G into an edge with probability epsilon/n, where epsilon is a small positive constant. This perturbation model has been studied previously in several contexts, including smoothed analysis, small world networks, and combinatorics. Connected graphs can be bad expanders, can have very large diameter, and possibly contain no long paths. In contrast, we show that if G is an n-vertex connected graph then typically G* has edge expansion Omega(1/(log n)), diameter O(log n), vertex expansion Omega(1/(log n)), and contains a path of length Omega(n), where for the last two properties we additionally assume that G has bounded maximum degree. Moreover, we show that if G has bounded degeneracy, then typically the mixing time of the lazy random walk on G* is O(log^2(n)). All these results are asymptotically tight

    Explicit expanders with cutoff phenomena

    Full text link
    The cutoff phenomenon describes a sharp transition in the convergence of an ergodic finite Markov chain to equilibrium. Of particular interest is understanding this convergence for the simple random walk on a bounded-degree expander graph. The first example of a family of bounded-degree graphs where the random walk exhibits cutoff in total-variation was provided only very recently, when the authors showed this for a typical random regular graph. However, no example was known for an explicit (deterministic) family of expanders with this phenomenon. Here we construct a family of cubic expanders where the random walk from a worst case initial position exhibits total-variation cutoff. Variants of this construction give cubic expanders without cutoff, as well as cubic graphs with cutoff at any prescribed time-point.Comment: 17 pages, 2 figure

    On the Mixing Time of Geographical Threshold Graphs

    Full text link
    We study the mixing time of random graphs in the dd-dimensional toric unit cube [0,1]d[0,1]^d generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights, drawn from some distribution. The connectivity threshold for GTGs is comparable to that of RGGs, essentially corresponding to a connectivity radius of r=(logn/n)1/dr=(\log n/n)^{1/d}. However, the degree distributions at this threshold are quite different: in an RGG the degrees are essentially uniform, while RGGs have heterogeneous degrees that depend upon the weight distribution. Herein, we study the mixing times of random walks on dd-dimensional GTGs near the connectivity threshold for d2d \geq 2. If the weight distribution function decays with P[Wx]=O(1/xd+ν)\mathbb{P}[W \geq x] = O(1/x^{d+\nu}) for an arbitrarily small constant ν>0\nu>0 then the mixing time of GTG is \mixbound. This matches the known mixing bounds for the dd-dimensional RGG

    Cutoff for non-backtracking random walks on sparse random graphs

    Get PDF
    A finite ergodic Markov chain is said to exhibit cutoff if its distance to stationarity remains close to 1 over a certain number of iterations and then abruptly drops to near 0 on a much shorter time scale. Discovered in the context of card shuffling (Aldous-Diaconis, 1986), this phenomenon is now believed to be rather typical among fast mixing Markov chains. Yet, establishing it rigorously often requires a challengingly detailed understanding of the underlying chain. Here we consider non-backtracking random walks on random graphs with a given degree sequence. Under a general sparsity condition, we establish the cutoff phenomenon, determine its precise window, and prove that the (suitably rescaled) cutoff profile approaches a remarkably simple, universal shape
    corecore