3 research outputs found

    Mixing body-parts model for 2D human pose estimation in stereo videos

    Get PDF
    This study targets 2D articulated human pose estimation (i.e. localisation of body limbs) in stereo videos. Although in recent years depth-based devices (e.g. Microsoft Kinect) have gained popularity, as they perform very well in controlled indoor environments (e.g. living rooms, operating theatres or gyms), they suffer clear problems in outdoor scenarios and, therefore, human pose estimation is still an interesting unsolved problem. The authors propose here a novel approach that is able to localise upper-body keypoints (i.e. shoulders, elbows, and wrists) in temporal sequences of stereo image pairs. The authors' method starts by locating and segmenting people in the image pairs by using disparity and appearance information. Then, a set of candidate body poses is computed for each view independently. Finally, temporal and stereo consistency is applied to estimate a final 2D pose. The authors' validate their model on three challenging datasets: `stereo human pose estimation dataset', `poses in the wild' and `INRIA 3DMovie'. The experimental results show that the authors' model not only establishes new state-of-the-art results on stereo sequences, but also brings improvements in monocular sequences

    3D human pose estimation from depth maps using a deep combination of poses

    Full text link
    Many real-world applications require the estimation of human body joints for higher-level tasks as, for example, human behaviour understanding. In recent years, depth sensors have become a popular approach to obtain three-dimensional information. The depth maps generated by these sensors provide information that can be employed to disambiguate the poses observed in two-dimensional images. This work addresses the problem of 3D human pose estimation from depth maps employing a Deep Learning approach. We propose a model, named Deep Depth Pose (DDP), which receives a depth map containing a person and a set of predefined 3D prototype poses and returns the 3D position of the body joints of the person. In particular, DDP is defined as a ConvNet that computes the specific weights needed to linearly combine the prototypes for the given input. We have thoroughly evaluated DDP on the challenging 'ITOP' and 'UBC3V' datasets, which respectively depict realistic and synthetic samples, defining a new state-of-the-art on them.Comment: Accepted for publication at "Journal of Visual Communication and Image Representation

    Mixing body-parts model for 2D human pose estimation in stereo videos

    No full text
    This study targets 2D articulated human pose estimation (i.e. localisation of body limbs) in stereo videos. Although in recent years depth-based devices (e.g. Microsoft Kinect) have gained popularity, as they perform very well in controlled indoor environments (e.g. living rooms, operating theatres or gyms), they suffer clear problems in outdoor scenarios and, therefore, human pose estimation is still an interesting unsolved problem. The authors propose here a novel approach that is able to localise upper-body keypoints (i.e. shoulders, elbows, and wrists) in temporal sequences of stereo image pairs. The authors' method starts by locating and segmenting people in the image pairs by using disparity and appearance information. Then, a set of candidate body poses is computed for each view independently. Finally, temporal and stereo consistency is applied to estimate a final 2D pose. The authors' validate their model on three challenging datasets: stereo human pose estimation dataset', poses in the wild' and INRIA 3DMovie'. The experimental results show that the authors' model not only establishes new state-of-the-art results on stereo sequences, but also brings improvements in monocular sequences
    corecore