3,765 research outputs found

    Mixing Times of Markov Chains on Degree Constrained Orientations of Planar Graphs

    Full text link
    We study Markov chains for α\alpha-orientations of plane graphs, these are orientations where the outdegree of each vertex is prescribed by the value of a given function α\alpha. The set of α\alpha-orientations of a plane graph has a natural distributive lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of directed facial cycles in the α\alpha-orientation. We have a positive and several negative results regarding the mixing time of such Markov chains. A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with maximum degree at most 4. Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied before by Miracle et al.. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we present the first example of a function α\alpha and a class of plane triangulations of constant maximum degree such that the up-down Markov chain on the α\alpha-orientations of these graphs is slowly mixing

    Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

    Get PDF
    The six-vertex model in statistical physics is a weighted generalization of the ice model on Z^2 (i.e., Eulerian orientations) and the zero-temperature three-state Potts model (i.e., proper three-colorings). The phase diagram of the model represents its physical properties and suggests where local Markov chains will be efficient. In this paper, we analyze the mixing time of Glauber dynamics for the six-vertex model in the ordered phases. Specifically, we show that for all Boltzmann weights in the ferroelectric phase, there exist boundary conditions such that local Markov chains require exponential time to converge to equilibrium. This is the first rigorous result bounding the mixing time of Glauber dynamics in the ferroelectric phase. Our analysis demonstrates a fundamental connection between correlated random walks and the dynamics of intersecting lattice path models (or routings). We analyze the Glauber dynamics for the six-vertex model with free boundary conditions in the antiferroelectric phase and significantly extend the region for which local Markov chains are known to be slow mixing. This result relies on a Peierls argument and novel properties of weighted non-backtracking walks

    Functions of random walks on hyperplane arrangements

    Get PDF
    Many seemingly disparate Markov chains are unified when viewed as random walks on the set of chambers of a hyperplane arrangement. These include the Tsetlin library of theoretical computer science and various shuffling schemes. If only selected features of the chains are of interest, then the mixing times may change. We study the behavior of hyperplane walks, viewed on a subarrangement of a hyperplane arrangement. These include many new examples, for instance a random walk on the set of acyclic orientations of a graph. All such walks can be treated in a uniform fashion, yielding diagonalizable matrices with known eigenvalues, stationary distribution and good rates of convergence to stationarity.Comment: Final version; Section 4 has been split into two section

    Mixing times of lozenge tiling and card shuffling Markov chains

    Full text link
    We show how to combine Fourier analysis with coupling arguments to bound the mixing times of a variety of Markov chains. The mixing time is the number of steps a Markov chain takes to approach its equilibrium distribution. One application is to a class of Markov chains introduced by Luby, Randall, and Sinclair to generate random tilings of regions by lozenges. For an L X L region we bound the mixing time by O(L^4 log L), which improves on the previous bound of O(L^7), and we show the new bound to be essentially tight. In another application we resolve a few questions raised by Diaconis and Saloff-Coste, by lower bounding the mixing time of various card-shuffling Markov chains. Our lower bounds are within a constant factor of their upper bounds. When we use our methods to modify a path-coupling analysis of Bubley and Dyer, we obtain an O(n^3 log n) upper bound on the mixing time of the Karzanov-Khachiyan Markov chain for linear extensions.Comment: 39 pages, 8 figure

    Testing Uniformity of Stationary Distribution

    Full text link
    A random walk on a directed graph gives a Markov chain on the vertices of the graph. An important question that arises often in the context of Markov chain is whether the uniform distribution on the vertices of the graph is a stationary distribution of the Markov chain. Stationary distribution of a Markov chain is a global property of the graph. In this paper, we prove that for a regular directed graph whether the uniform distribution on the vertices of the graph is a stationary distribution, depends on a local property of the graph, namely if (u,v) is an directed edge then outdegree(u) is equal to indegree(v). This result also has an application to the problem of testing whether a given distribution is uniform or "far" from being uniform. This is a well studied problem in property testing and statistics. If the distribution is the stationary distribution of the lazy random walk on a directed graph and the graph is given as an input, then how many bits of the input graph do one need to query in order to decide whether the distribution is uniform or "far" from it? This is a problem of graph property testing and we consider this problem in the orientation model (introduced by Halevy et al.). We reduce this problem to test (in the orientation model) whether a directed graph is Eulerian. And using result of Fischer et al. on query complexity of testing (in the orientation model) whether a graph is Eulerian, we obtain bounds on the query complexity for testing whether the stationary distribution is uniform

    Generating Random Elements of Finite Distributive Lattices

    Full text link
    This survey article describes a method for choosing uniformly at random from any finite set whose objects can be viewed as constituting a distributive lattice. The method is based on ideas of the author and David Wilson for using ``coupling from the past'' to remove initialization bias from Monte Carlo randomization. The article describes several applications to specific kinds of combinatorial objects such as tilings, constrained lattice paths, and alternating-sign matrices.Comment: 13 page
    • …
    corecore