1,747 research outputs found

    Mixing Linear SVMs for Nonlinear Classification

    Full text link

    Rejoinder to "Support Vector Machines with Applications"

    Full text link
    Rejoinder to ``Support Vector Machines with Applications'' [math.ST/0612817]Comment: Published at http://dx.doi.org/10.1214/088342306000000501 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood

    Full text link
    We consider the problem of discriminative factor analysis for data that are in general non-Gaussian. A Bayesian model based on the ranks of the data is proposed. We first introduce a new {\em max-margin} version of the rank-likelihood. A discriminative factor model is then developed, integrating the max-margin rank-likelihood and (linear) Bayesian support vector machines, which are also built on the max-margin principle. The discriminative factor model is further extended to the {\em nonlinear} case through mixtures of local linear classifiers, via Dirichlet processes. Fully local conjugacy of the model yields efficient inference with both Markov Chain Monte Carlo and variational Bayes approaches. Extensive experiments on benchmark and real data demonstrate superior performance of the proposed model and its potential for applications in computational biology.Comment: 14 pages, 7 figures, ICML 201

    Comment on "Support Vector Machines with Applications"

    Full text link
    Comment on ``Support Vector Machines with Applications'' [math.ST/0612817]Comment: Published at http://dx.doi.org/10.1214/088342306000000484 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM’s high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions.Peer reviewe
    • …
    corecore