121,832 research outputs found

    Mixed-integer Quadratic Programming is in NP

    Full text link
    Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP and integer linear programming is in NP

    Mixed integer predictive control and shortest path reformulation

    Get PDF
    Mixed integer predictive control deals with optimizing integer and real control variables over a receding horizon. The mixed integer nature of controls might be a cause of intractability for instances of larger dimensions. To tackle this little issue, we propose a decomposition method which turns the original nn-dimensional problem into nn indipendent scalar problems of lot sizing form. Each scalar problem is then reformulated as a shortest path one and solved through linear programming over a receding horizon. This last reformulation step mirrors a standard procedure in mixed integer programming. The approximation introduced by the decomposition can be lowered if we operate in accordance with the predictive control technique: i) optimize controls over the horizon ii) apply the first control iii) provide measurement updates of other states and repeat the procedure

    Alternative mathematical programming formulations for FSS synthesis

    Get PDF
    A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem

    ALPS: A Linear Program Solver

    Get PDF
    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program

    Mixed Integer Linear Programming Formulation Techniques

    Get PDF
    A wide range of problems can be modeled as Mixed Integer Linear Programming (MIP) problems using standard formulation techniques. However, in some cases the resulting MIP can be either too weak or too large to be effectively solved by state of the art solvers. In this survey we review advanced MIP formulation techniques that result in stronger and/or smaller formulations for a wide class of problems

    Unbounded convex sets for non-convex mixed-integer quadratic programming

    Get PDF
    This paper introduces a fundamental family of unbounded convex sets that arises in the context of non-convex mixed-integer quadratic programming. It is shown that any mixed-integer quadratic program with linear constraints can be reduced to the minimisation of a linear function over a face of a set in the family. Some fundamental properties of the convex sets are derived, along with connections to some other well-studied convex sets. Several classes of valid and facet-inducing inequalities are also derived
    corecore