10 research outputs found

    Mixed Linear Layouts of Planar Graphs

    Full text link
    A kk-stack (respectively, kk-queue) layout of a graph consists of a total order of the vertices, and a partition of the edges into kk sets of non-crossing (non-nested) edges with respect to the vertex ordering. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 11-stack 11-queue layout in which every edge is assigned to a stack or to a queue that use a common vertex ordering. We disprove this conjecture by providing a planar graph that does not have such a mixed layout. In addition, we study mixed layouts of graph subdivisions, and show that every planar graph has a mixed subdivision with one division vertex per edge.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Parameterized Algorithms for Queue Layouts

    Full text link
    An hh-queue layout of a graph GG consists of a linear order of its vertices and a partition of its edges into hh queues, such that no two independent edges of the same queue nest. The minimum hh such that GG admits an hh-queue layout is the queue number of GG. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph GG has queue number 11 and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of GG. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary hh.Comment: Appears in the Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization (GD 2020

    On Families of Planar DAGs with Constant Stack Number

    Full text link
    A kk-stack layout (or kk-page book embedding) of a graph consists of a total order of the vertices, and a partition of the edges into kk sets of non-crossing edges with respect to the vertex order. The stack number of a graph is the minimum kk such that it admits a kk-stack layout. In this paper we study a long-standing problem regarding the stack number of planar directed acyclic graphs (DAGs), for which the vertex order has to respect the orientation of the edges. We investigate upper and lower bounds on the stack number of several families of planar graphs: We prove constant upper bounds on the stack number of single-source and monotone outerplanar DAGs and of outerpath DAGs, and improve the constant upper bound for upward planar 3-trees. Further, we provide computer-aided lower bounds for upward (outer-) planar DAGs

    Four Pages Are Indeed Necessary for Planar Graphs

    Get PDF
    An embedding of a graph in a book consists of a linear order of its vertices along the spine of the book and of an assignment of its edges to the pages of the book, so that no two edges on the same page cross. The book thickness of a graph is the minimum number of pages over all its book embeddings. Accordingly, the book thickness of a class of graphs is the maximum book thickness over all its members. In this paper, we address a long-standing open problem regarding the exact book thickness of the class of planar graphs, which previously was known to be either three or four. We settle this problem by demonstrating planar graphs that require four pages in any of their book embeddings, thus establishing that the book thickness of the class of planar graphs is four

    Directed Acyclic Outerplanar Graphs Have Constant Stack Number

    Full text link
    The stack number of a directed acyclic graph GG is the minimum kk for which there is a topological ordering of GG and a kk-coloring of the edges such that no two edges of the same color cross, i.e., have alternating endpoints along the topological ordering. We prove that the stack number of directed acyclic outerplanar graphs is bounded by a constant, which gives a positive answer to a conjecture by Heath, Pemmaraju and Trenk [SIAM J. Computing, 1999]. As an immediate consequence, this shows that all upward outerplanar graphs have constant stack number, answering a question by Bhore et al. [GD 2021] and thereby making significant progress towards the problem for general upward planar graphs originating from Nowakowski and Parker [Order, 1989]. As our main tool we develop the novel technique of directed HH-partitions, which might be of independent interest. We complement the bounded stack number for directed acyclic outerplanar graphs by constructing a family of directed acyclic 2-trees that have unbounded stack number, thereby refuting a conjecture by N\"ollenburg and Pupyrev [arXiv:2107.13658, 2021]
    corecore