209 research outputs found

    MixupE: Understanding and Improving Mixup from Directional Derivative Perspective

    Full text link
    Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. Based on this new insight, we propose an improved version of Mixup, theoretically justified to deliver better generalization performance than the vanilla Mixup. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across multiple datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.Comment: 16 pages, Best Student Paper Award at UAI 202

    Adversarial robustness of VAEs through the lens of local geometry

    Full text link
    In an unsupervised attack on variational autoencoders (VAEs), an adversary finds a small perturbation in an input sample that significantly changes its latent space encoding, thereby compromising the reconstruction for a fixed decoder. A known reason for such vulnerability is the distortions in the latent space resulting from a mismatch between approximated latent posterior and a prior distribution. Consequently, a slight change in an input sample can move its encoding to a low/zero density region in the latent space resulting in an unconstrained generation. This paper demonstrates that an optimal way for an adversary to attack VAEs is to exploit a directional bias of a stochastic pullback metric tensor induced by the encoder and decoder networks. The pullback metric tensor of an encoder measures the change in infinitesimal latent volume from an input to a latent space. Thus, it can be viewed as a lens to analyse the effect of input perturbations leading to latent space distortions. We propose robustness evaluation scores using the eigenspectrum of a pullback metric tensor. Moreover, we empirically show that the scores correlate with the robustness parameter β\beta of the β\beta-VAE. Since increasing β\beta also degrades reconstruction quality, we demonstrate a simple alternative using \textit{mixup} training to fill the empty regions in the latent space, thus improving robustness with improved reconstruction.Comment: International Conference on Artificial Intelligence and Statistics (AISTATS) 202

    Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training

    Full text link
    Despite their performance, Artificial Neural Networks are not reliable enough for most of industrial applications. They are sensitive to noises, rotations, blurs and adversarial examples. There is a need to build defenses that protect against a wide range of perturbations, covering the most traditional common corruptions and adversarial examples. We propose a new data augmentation strategy called M-TLAT and designed to address robustness in a broad sense. Our approach combines the Mixup augmentation and a new adversarial training algorithm called Targeted Labeling Adversarial Training (TLAT). The idea of TLAT is to interpolate the target labels of adversarial examples with the ground-truth labels. We show that M-TLAT can increase the robustness of image classifiers towards nineteen common corruptions and five adversarial attacks, without reducing the accuracy on clean samples

    InfoScrub: Towards Attribute Privacy by Targeted Obfuscation

    Get PDF
    Personal photos of individuals when shared online, apart from exhibiting a myriad of memorable details, also reveals a wide range of private information and potentially entails privacy risks (e.g., online harassment, tracking). To mitigate such risks, it is crucial to study techniques that allow individuals to limit the private information leaked in visual data. We tackle this problem in a novel image obfuscation framework: to maximize entropy on inferences over targeted privacy attributes, while retaining image fidelity. We approach the problem based on an encoder-decoder style architecture, with two key novelties: (a) introducing a discriminator to perform bi-directional translation simultaneously from multiple unpaired domains; (b) predicting an image interpolation which maximizes uncertainty over a target set of attributes. We find our approach generates obfuscated images faithful to the original input images, and additionally increase uncertainty by 6.2×\times (or up to 0.85 bits) over the non-obfuscated counterparts.Comment: 20 pages, 7 figure
    corecore