16 research outputs found

    Discovery of Malicious Attacks to Improve Mobile Collaborative Learning (MCL)

    Get PDF
    Mobile collaborative learning (MCL) is highly acknowledged and focusing paradigm in eductional institutions and several organizations across the world. It exhibits intellectual synergy of various combined minds to handle the problem and stimulate the social activity of mutual understanding. To improve and foster the baseline of MCL, several supporting architectures, frameworks including number of the mobile applications have been introduced. Limited research was reported that particularly focuses to enhance the security of those pardigms and provide secure MCL to users. The paper handles the issue of rogue DHCP server that affects and disrupts the network resources during the MCL. The rogue DHCP is unauthorized server that releases the incorrect IP address to users and sniffs the traffic illegally. The contribution specially provides the privacy to users and enhances the security aspects of mobile supported collaborative framework (MSCF). The paper introduces multi-frame signature-cum anomaly-based intrusion detection systems (MSAIDS) supported with novel algorithms through addition of new rules in IDS and mathematcal model. The major target of contribution is to detect the malicious attacks and blocks the illegal activities of rogue DHCP server. This innovative security mechanism reinforces the confidence of users, protects network from illicit intervention and restore the privacy of users. Finally, the paper validates the idea through simulation and compares the findings with other existing techniques.Comment: 20 pages and 11 figures; International Journal of Computer Networks and Communications (IJCNC) July 2012, Volume 4. Number

    Denial of service attack detection through machine learning for the IoT

    Get PDF
    Sustained Internet of Things (IoT) deployment and functioning are heavily reliant on the use of effective data communication protocols. In the IoT landscape, the publish/subscribe-based Message Queuing Telemetry Transport (MQTT) protocol is popular. Cyber security threats against the MQTT protocol are anticipated to increase at par with its increasing use by IoT manufacturers. In particular, IoT is vulnerable to protocol-based Application layer Denial of Service (DoS) attacks, which have been known to cause widespread service disruption in legacy systems. In this paper, we propose an Application layer DoS attack detection framework for the MQTT protocol and test the scheme on legitimate and protocol compliant DoS attack scenarios. To protect the MQTT message brokers from such attacks, we propose a machine learning-based detection framework developed for the MQTT protocol. Through experiments, we demonstrate the impact of such attacks on various MQTT brokers and evaluate the effectiveness of the proposed framework to detect these malicious attacks. The results obtained indicate that the attackers can overwhelm the server resources even when legitimate access was denied to MQTT brokers and resources have been restricted. In addition, the MQTT features we have identified showed high attack detection accuracy. The field size and length-based features drastically reduced the false-positive rates and are suitable in detecting IoT based attacks

    DDoS-Capable IoT Malwares: comparative analysis and Mirai Investigation

    Get PDF
    The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far

    On The Impact of Internet Naming Evolution: Deployment, Performance, and Security Implications

    Get PDF
    As one of the most critical components of the Internet, the Domain Name System (DNS) provides naming services for Internet users, who rely on DNS to perform the translation between the domain names and network entities before establishing an In- ternet connection. In this dissertation, we present our studies on different aspects of the naming infrastructure in today’s Internet, including DNS itself and the network services based on the naming infrastructure such as Content Delivery Networks (CDNs). We first characterize the evolution and features of the DNS resolution in web ser- vices under the emergence of third-party hosting services and cloud platforms. at the bottom level of the DNS hierarchy, the authoritative DNS servers (ADNSes) maintain the actual mapping records and answer the DNS queries. The increasing use of upstream ADNS services (i.e., third-party ADNS-hosting services) and Infrastructure-as-a-Service (IaaS) clouds facilitates the deployment of web services, and has been fostering the evo- lution of the deployment of ADNS servers. to shed light on this trend, we conduct a large-scale measurement to investigate the ADNS deployment patterns of modern web services and examine the characteristics of different deployment styles, such as perfor- mance, life-cycle of servers, and availability. Furthermore, we specifically focus on the DNS deployment for subdomains hosted in IaaS clouds. Then, we examine a pervasive misuse of DNS names and explore a straightforward solution to mitigate the performance penalty in DNS cache. DNS cache plays a critical role in domain name resolution, providing (1) high scalability at Root and Top-level- domain nameservers with reduced workloads and (2) low response latency to clients when the resource records of the queried domains are cached. However, the pervasive misuses of domain names, e.g., the domain names of “one-time-use” pattern, have negative impact on the effectiveness of DNS caching as the cache has been filled with those entries that are highly unlikely to be retrieved. By leveraging the domain name based features that are explicitly available from a domain name itself, we propose simple policies for improving DNS cache performance and validate their efficacy using real traces. Finally, we investigate the security implications of a fundamental vulnerability in DNS- based CDNs. The success of CDNs relies on the mapping system that leverages the dynamically generated DNS records to distribute a client’s request to a proximal server for achieving optimal content delivery. However, the mapping system is vulnerable to malicious hijacks, as it is very difficult to provide pre-computed DNSSEC signatures for dynamically generated records in CDNs. We illustrate that an adversary can deliberately tamper with the resolvers to hijack CDN’s redirection by injecting crafted but legitimate mappings between end-users and edge servers, while remaining undetectable by exist- ing security practices, which can cause serious threats that nullify the benefits offered by CDNs, such as proximal access, load balancing, and DoS protection. We further demonstrate that DNSSEC is ineffective to address this problem, even with the newly adopted ECDSA that is capable of achieving live signing for dynamically generated DNS records. We then discuss countermeasures against this redirection hijacking

    DYNAMIC ROUND-ROBIN PEER-TO-PEER (P2P) DOMAIN NAME SYSTEM (DNS)

    Get PDF
    corecore