3 research outputs found

    Fuzzy C-mean missing data imputation for analogy-based effort estimation

    Get PDF
    The accuracy of effort estimation in one of the major factors in the success or failure of software projects. Analogy-Based Estimation (ABE) is a widely accepted estimation model since its flow human nature in selecting analogies similar in nature to the target project. The accuracy of prediction in ABE model in strongly associated with the quality of the dataset since it depends on previous completed projects for estimation. Missing Data (MD) is one of major challenges in software engineering datasets. Several missing data imputation techniques have been investigated by researchers in ABE model. Identification of the most similar donor values from the completed software projects dataset for imputation is a challenging issue in existing missing data techniques adopted for ABE model. In this study, Fuzzy C-Mean Imputation (FCMI), Mean Imputation (MI) and K-Nearest Neighbor Imputation (KNNI) are investigated to impute missing values in Desharnais dataset under different missing data percentages (Desh-Miss1, Desh-Miss2) for ABE model. FCMI-ABE technique is proposed in this study. Evaluation comparison among MI, KNNI, and (ABE-FCMI) is conducted for ABE model to identify the suitable MD imputation method. The results suggest that the use of (ABE-FCMI), rather than MI and KNNI, imputes more reliable values to incomplete software projects in the missing datasets. It was also found that the proposed imputation method significantly improves software development effort prediction of ABE model

    Data mining for heart failure : an investigation into the challenges in real life clinical datasets

    Get PDF
    Clinical data presents a number of challenges including missing data, class imbalance, high dimensionality and non-normal distribution. A motivation for this research is to investigate and analyse the manner in which the challenges affect the performance of algorithms. The challenges were explored with the help of a real life heart failure clinical dataset known as Hull LifeLab, obtained from a live cardiology clinic at the Hull Royal Infirmary Hospital. A Clinical Data Mining Workflow (CDMW) was designed with three intuitive stages, namely, descriptive, predictive and prescriptive. The naming of these stages reflects the nature of the analysis that is possible within each stage; therefore a number of different algorithms are employed. Most algorithms require the data to be distributed in a normal manner. However, the distribution is not explicitly used within the algorithms. Approaches based on Bayes use the properties of the distributions very explicitly, and thus provides valuable insight into the nature of the data.The first stage of the analysis is to investigate if the assumptions made for Bayes hold, e.g. the strong independence assumption and the assumption of a Gaussian distribution. The next stage is to investigate the role of missing values. Results found that imputation does not affect the performance as much as those records which are initially complete. These records are often not outliers, but contain problem variables. A method was developed to identify these. The effect of skews in the data was also investigated within the CDMW. However, it was found that methods based on Bayes were able to handle these, albeit with a small variability in performance. The thesis provides an insight into the reasons why clinical data often causes problems. Even the issue of imbalanced classes is not an issue, for Bayes is independent of this
    corecore