8,406 research outputs found

    MIMO Radar Waveform Optimization With Prior Information of the Extended Target and Clutter

    Get PDF
    The concept of multiple-input multiple-output (MIMO) radar allows each transmitting antenna element to transmit an arbitrary waveform. This provides extra degrees of freedom compared to the traditional transmit beamforming approach. It has been shown in the recent literature that MIMO radar systems have many advantages. In this paper, we consider the joint optimization of waveforms and receiving filters in the MIMO radar for the case of extended target in clutter. A novel iterative algorithm is proposed to optimize the waveforms and receiving filters such that the detection performance can be maximized. The corresponding iterative algorithms are also developed for the case where only the statistics or the uncertainty set of the target impulse response is available. These algorithms guarantee that the SINR performance improves in each iteration step. Numerical results show that the proposed methods have better SINR performance than existing design methods

    Robust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques

    Full text link
    In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the \sinq{true} mean square error (MSE) in the Krylov subspace, even when the estimated statistics become erroneous (e.g., due to sudden changes of environments). Therefore, compared with those existing methods, the proposed algorithm is more suited to adaptive filtering applications. The algorithm is analyzed based on a modified version of the adaptive projected subgradient method (APSM). Numerical examples demonstrate that the proposed algorithm enjoys better tracking performance than the existing methods for the interference suppression problem in code-division multiple-access (CDMA) systems as well as for simple system identification problems.Comment: 10 figures. In IEEE Transactions on Signal Processing, 201

    Model-Based Calibration of Filter Imperfections in the Random Demodulator for Compressive Sensing

    Full text link
    The random demodulator is a recent compressive sensing architecture providing efficient sub-Nyquist sampling of sparse band-limited signals. The compressive sensing paradigm requires an accurate model of the analog front-end to enable correct signal reconstruction in the digital domain. In practice, hardware devices such as filters deviate from their desired design behavior due to component variations. Existing reconstruction algorithms are sensitive to such deviations, which fall into the more general category of measurement matrix perturbations. This paper proposes a model-based technique that aims to calibrate filter model mismatches to facilitate improved signal reconstruction quality. The mismatch is considered to be an additive error in the discretized impulse response. We identify the error by sampling a known calibrating signal, enabling least-squares estimation of the impulse response error. The error estimate and the known system model are used to calibrate the measurement matrix. Numerical analysis demonstrates the effectiveness of the calibration method even for highly deviating low-pass filter responses. The proposed method performance is also compared to a state of the art method based on discrete Fourier transform trigonometric interpolation.Comment: 10 pages, 8 figures, submitted to IEEE Transactions on Signal Processin

    A Tractable Fault Detection and Isolation Approach for Nonlinear Systems with Probabilistic Performance

    Full text link
    This article presents a novel perspective along with a scalable methodology to design a fault detection and isolation (FDI) filter for high dimensional nonlinear systems. Previous approaches on FDI problems are either confined to linear systems or they are only applicable to low dimensional dynamics with specific structures. In contrast, shifting attention from the system dynamics to the disturbance inputs, we propose a relaxed design perspective to train a linear residual generator given some statistical information about the disturbance patterns. That is, we propose an optimization-based approach to robustify the filter with respect to finitely many signatures of the nonlinearity. We then invoke recent results in randomized optimization to provide theoretical guarantees for the performance of the proposed filer. Finally, motivated by a cyber-physical attack emanating from the vulnerabilities introduced by the interaction between IT infrastructure and power system, we deploy the developed theoretical results to detect such an intrusion before the functionality of the power system is disrupted
    corecore