3 research outputs found

    The Majorana Demonstrator calibration system

    Get PDF
    The Collaboration is searching for the neutrinoless double-beta decay of the nucleus Ge. The is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-ton Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source are designed to be controlled by the data acquisition system and do not require any direct human interaction. In this paper, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations

    Vision-Based Finger Detection, Tracking, and Event Identification Techniques for Multi-Touch Sensing and Display Systems

    Get PDF
    This study presents efficient vision-based finger detection, tracking, and event identification techniques and a low-cost hardware framework for multi-touch sensing and display applications. The proposed approach uses a fast bright-blob segmentation process based on automatic multilevel histogram thresholding to extract the pixels of touch blobs obtained from scattered infrared lights captured by a video camera. The advantage of this automatic multilevel thresholding approach is its robustness and adaptability when dealing with various ambient lighting conditions and spurious infrared noises. To extract the connected components of these touch blobs, a connected-component analysis procedure is applied to the bright pixels acquired by the previous stage. After extracting the touch blobs from each of the captured image frames, a blob tracking and event recognition process analyzes the spatial and temporal information of these touch blobs from consecutive frames to determine the possible touch events and actions performed by users. This process also refines the detection results and corrects for errors and occlusions caused by noise and errors during the blob extraction process. The proposed blob tracking and touch event recognition process includes two phases. First, the phase of blob tracking associates the motion correspondence of blobs in succeeding frames by analyzing their spatial and temporal features. The touch event recognition process can identify meaningful touch events based on the motion information of touch blobs, such as finger moving, rotating, pressing, hovering, and clicking actions. Experimental results demonstrate that the proposed vision-based finger detection, tracking, and event identification system is feasible and effective for multi-touch sensing applications in various operational environments and conditions

    HumanTop: a multi-object tracking tabletop

    Full text link
    In this paper, a computer vision based interactive multi-touch tabletop system called HumanTop is introduced. HumanTop implements a stereo camera vision subsystem which allows not only an accurate fingertip tracking algorithm but also a precise touch-over-the-working surface detection method. Based on a pair of visible spectra cameras, a novel synchronization circuit makes the camera caption and the image projection independent from each other, providing the minimum basis for the development of computer vision analysis based on visible spectrum cameras without any interference coming from the projector. The assembly of both cameras and the synchronization circuit is not only capable of performing an ad-hoc version of a depth camera, but it also introduces the recognition and tracking of textured planar objects, even when contents are projected over them. On the other hand HumanTop supports the tracking of sheets of paper and ID-code markers. This set of features makes the HumanTop a comprehensive, intuitive and versatile augmented tabletop that provides multitouch interaction with projective augmented reality on any flat surface. As an example to exploit all the capabilities of HumanTop, an educational application has been developed using an augmented book as a launcher to different didactic contents. A pilot study in which 28 fifth graders participated is presented. Results about efficiency, usability/satisfaction and motivation are provided. These results suggest that HumanTop is an interesting platform for the development of educational contents. © 2012 Springer Science+Business Media, LLC.This study was funded by Ministerio de Educacion y Ciencia Spain, Project SALTET (TIN2010-21296-C02-01), Project Game Teen (TIN2010-20187) projects Consolider-C (SEJ2006-14301/PSIC), "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII" and Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacio, 2008-157).Soto Candela, E.; Ortega PĂ©rez, M.; MarĂ­n Romero, C.; PĂ©rez LĂłpez, DC.; Salvador Herranz, GM.; Contero, M.; Alcañiz Raya, ML. (2014). HumanTop: a multi-object tracking tabletop. Multimedia Tools and Applications. 70(3):1837-1868. https://doi.org/10.1007/s11042-012-1193-yS18371868703Agarwal A, Izadi S, Chandraker M, Blake A (2007) High precision multi-touch sensing on surfaces using overhead cameras. In: IEEE int. workshop horiz. interact. hum.-comput. interact., TABLETOP’07. IEEE, pp 197–200Alexa M, Bollensdorff B, Bressler I, Elstner S, Hahne U, Kettlitz N, Lindow N, Lubkoll R, Richter R, Stripf C et al (2008) Continuous reference images for ftir touch sensing. In: ACM SIGGRAPH poster. ACM, p 49Argyros A, Lourakis M (2006) Vision-based interpretation of hand gestures for remote control of a computer mouse. In: Comput. vis. hum.-comput. interact., pp 40–51Barnes C, Jacobs D, Sanders J, Goldman D, Rusinkiewicz S, Finkelstein A, Agrawala M (2008) Video puppetry: a performative interface for cutout animation. ACM Trans Graph (TOG) 27:124Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly MediaCampbell D, Stanley J, Gage N (1963) Experimental and quasi-experimental designs for research. Houghton Mifflin, BostonChen D, Zhang G (2005) A new sub-pixel detector for x-corners in camera calibration targets. In: 13th int. conf. cent. Eur. comput. graph., vis. comput. vis.Dietz P, Leigh D (2001) Diamondtouch: a multi-user touch technology. In: Proc. 14th ACM symp. user interface softw. technol. ACM, pp 219–226Do-Lenh S, Kaplan F, Sharma A, Dillenbourg P (2009) Multi-finger interactions with papers on augmented tabletops. In: Proc. 3rd int. conf. tangible embed. int. ACM, pp 267–274Dung L, Mizukawa M (2009) Fast hand feature extraction based on connected component labeling, distance transform and hough transform. J. Robot. Mechatronics 21(6):726–738Echtler F, Sielhorst T, Huber M, Klinker G (2009) A short guide to modulated light. In: Proc. 3rd int. conf. tang. embed. interact. ACM, pp 393–396Echtler F, Pototschnig T, Klinker G (2010) An led-based multitouch sensor for lcd screens. In: Proc. 4th int. conf. tang. embed. interact.. ACM, pp 227–230Han J (2005) Low-cost multi-touch sensing through frustrated total internal reflection. In: Proc. 18th ACM symp. user interface softw. technol. ACM, pp 115–118Holman D, Vertegaal R, Altosaar M, Troje N, Johns D (2005) Paper windows: interaction techniques for digital paper. In: Proc. SIGCHI conf. hum. factor comput. syst. ACM, pp 591–599Izadi S, Agarwal A, Criminisi A, Winn J, Blake A, Fitzgibbon A (2007) C-slate: a multi-touch and object recognition system for remote collaboration using horizontal surfaces. In: IEEE int. workshop horiz. interact. hum.-comput. interact., TABLETOP’07. IEEE, pp 3–10JordĂ  S, Geiger G, Alonso M, Kaltenbrunner M (2007) The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In: Proc. 1st int. conf. tangible embed. interact. ACM, pp 139–146Kaltenbrunner M (2009) Reactivision and tuio: a tangible tabletop toolkit. In: Proc. ACM int. conf. interact. tabletop. surf. ACM, pp 9–16Katz I, Gabayan K, Aghajan H (2007) A multi-touch surface using multiple cameras. In: Proc. 9th int. conf. adv. concept. intell. vis. syst.. Springer, pp 97–108Kim K, Lepetit V, Woo W (2010) Scalable real-time planar targets tracking for digilog books. Vis Comput 26(6):1145–1154Lee T, Hollerer T (2007) Handy ar: markerless inspection of augmented reality objects using fingertip tracking. In: 11th IEEE int. symp. wearable comput. IEEE, pp 83–90Letessier J, BĂ©rard F (2004) Visual tracking of bare fingers for interactive surfaces. In: Proc. 17th ACM symp. user interface softw. technol. ACM, pp 119–122Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55Lucchese L, Mitra S (2002) Using saddle points for subpixel feature detection in camera calibration targets. In: Asian-Pac. conf. circuit. syst., vol 2. IEEE, pp 191–195Malik S, Laszlo J (2004) Visual touchpad: a two-handed gestural input device. In: Proc. 6th int. conf. multimodal interface. ACM, pp 289–296Manresa C, Varona J, Mas R, Perales F (2000) Real–time hand tracking and gesture recognition for human-computer interaction. In: Comput. vis. cent., pp 1–7MartĂ­n-GutiĂ©rrez J, LuĂ­s SaorĂ­n J, Contero M, Alcañiz M, PĂ©rez-LĂłpez D, Ortega M (2010) Design and validation of an augmented book for spatial abilities development in engineering students. Comput Graph 34(1):77–91McNaughton J (2010) Utilising emerging multi-touch table designs. Durham UniversityMicrosoft (2011) Microsoft surface. URL http://www.microsoft.com/surface/Muja M, Lowe D (2009) Fast approximate nearest neighbors with automatic algorithm configuration. In: Int. conf. comput. vis. theory appl. VISSAPP, pp 331–340Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: IEEE Comput. Soc. conf. comput. vis. pattern recognit., vol 2. IEEE, pp 2161–2168Oka K, Sato Y, Koike H (2002) Real-time fingertip tracking and gesture recognition. IEEE Comput Graph 22(6):64–71OpenSource (2011) Fast sift image features library. URL http://libsift.sourceforge.net/Peer P, Kovac J, Solina F (2003) Human skin color clustering for face detection, vol 2. IEEEPilet J, Saito H (2010) Virtually augmenting hundreds of real pictures: an approach based on learning, retrieval, and tracking. In: IEEE virtual real. conf. (VR). IEEE, pp 71–78Rekimoto J (2002) Smartskin: an infrastructure for freehand manipulation on interactive surfaces. In: Proc. SIGCHI conf. hum. factor. comput. syst.. ACM, pp 113–120Shi J, Tomasi C (1994) Good features to track. In: IEEE comput. soc. conf. proc. comput. vis. pattern recognit. IEEE, pp 593–600Tomasi C, Kanade T (1991) Detection and tracking of point features. School of Computer Science, Carnegie Mellon UniversityVerdiĂ© Y (2008) Evolution of hand tracking algorithms to mirrortrack. Tech. Rep. Vis. Interface Syst. Lab.Vos N, van der Meijden H, Denessen E (2011) Effects of constructing versus playing an educational game on student motivation and deep learning strategy use. Comput Educ 56(1):127–137Wagner D, Reitmayr G, Mulloni A, Drummond T, Schmalstieg D (2010) Real-time detection and tracking for augmented reality on mobile phones. IEEE Trans Vis Comput Graph 16(3):355–368Welch G, Bishop G (1995) An introduction to the Kalman filter. University of North Carolina at Chapel Hill, CiteseerWilson A (2004) Touchlight: an imaging touch screen and display for gesture-based interaction. In: Proc. 6th int. conf. multimodal interface. ACM, pp 69–76Wilson A (2005) Playanywhere: a compact interactive tabletop projection-vision system. In: Proc. 18th ACM symp user interface softw. technol. ACM, pp 83–92Wilson A (2010) Using a depth camera as a touch sensor. In: ACM int. conf. interact. tabletop. surf. ACM, pp 69–72Zerofrog (2011) Libsiftfast. URL http://sourceforge.net/projects/libsiftZhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334Zhang Z, Wu Y, Shan Y, Shafer S (2001) Visual panel: virtual mouse, keyboard and 3d controller with an ordinary piece of paper. In: Proc. workshop percept. user interface. ACM, pp 1–
    corecore