697 research outputs found

    Towards dynamic camera calibration for constrained flexible mirror imaging

    Get PDF
    Flexible mirror imaging systems consisting of a perspective camera viewing a scene reflected in a flexible mirror can provide direct control over image field-of-view and resolution. However, calibration of such systems is difficult due to the vast range of possible mirror shapes and the flexible nature of the system. This paper proposes the fundamentals of a dynamic calibration approach for flexible mirror imaging systems by examining the constrained case of single dimensional flexing. The calibration process consists of an initial primary calibration stage followed by in-service dynamic calibration. Dynamic calibration uses a linear approximation to initialise a non-linear minimisation step, the result of which is the estimate of the mirror surface shape. The method is easier to implement than existing calibration methods for flexible mirror imagers, requiring only two images of a calibration grid for each dynamic calibration update. Experimental results with both simulated and real data are presented that demonstrate the capabilities of the proposed approach

    Mirror-Aware Neural Humans

    Full text link
    Human motion capture either requires multi-camera systems or is unreliable using single-view input due to depth ambiguities. Meanwhile, mirrors are readily available in urban environments and form an affordable alternative by recording two views with only a single camera. However, the mirror setting poses the additional challenge of handling occlusions of real and mirror image. Going beyond existing mirror approaches for 3D human pose estimation, we utilize mirrors for learning a complete body model, including shape and dense appearance. Our main contributions are extending articulated neural radiance fields to include a notion of a mirror, making it sample-efficient over potential occlusion regions. Together, our contributions realize a consumer-level 3D motion capture system that starts from off-the-shelf 2D poses by automatically calibrating the camera, estimating mirror orientation, and subsequently lifting 2D keypoint detections to 3D skeleton pose that is used to condition the mirror-aware NeRF. We empirically demonstrate the benefit of learning a body model and accounting for occlusion in challenging mirror scenes.Comment: Project website: https://danielajisafe.github.io/mirror-aware-neural-humans

    A new mirror-based extrinsic camera calibration using an orthogonality constraint

    Full text link
    This paper is aimed at calibrating the relative posture and position, i.e. extrinsic parameters, of a stationary cam-era against a 3D reference object which is not directly visi-ble from the camera. We capture the reference object via a mirror under three different unknown poses, and then cali-brate the extrinsic parameters from 2D appearances of re-flections of the reference object in the mirrors. The key contribution of this paper is to present a new al-gorithm which returns a unique solution of three P3P prob-lems from three mirrored images. While each P3P problem has up to four solutions and therefore a set of three P3P problems has up to 64 solutions, our method can select a solution based on an orthogonality constraint which should be satisfied by all families of reflections of a single reference object. In addition we propose a new scheme to compute the extrinsic parameters by solving a large system of linear equations. These two points enable us to provide a unique and robust solution. We demonstrate the advantages of the proposed method against a state-of-the-art by qualitative and quantitative evaluations using synthesized and real data. 1

    Mirror surface reconstruction under an uncalibrated camera

    Get PDF
    This paper addresses the problem of mirror surface reconstruction, and a solution based on observing the reflections of a moving reference plane on the mirror surface is proposed. Unlike previous approaches which require tedious work to calibrate the camera, our method can recover both the camera intrinsics and extrinsics together with the mirror surface from reflections of the reference plane under at least three unknown distinct poses. Our previous work has demonstrated that 3D poses of the reference plane can be registered in a common coordinate system using reflection correspondences established across images. This leads to a bunch of registered 3D lines formed from the reflection correspondences. Given these lines, we first derive an analytical solution to recover the camera projection matrix through estimating the line projection matrix. We then optimize the camera projection matrix by minimizing reprojection errors computed based on a cross-ratio formulation. The mirror surface is finally reconstructed based on the optimized cross-ratio constraint. Experimental results on both synthetic and real data are presented, which demonstrate the feasibility and accuracy of our method.postprin

    Real-World Normal Map Capture for Nearly Flat Reflective Surfaces

    Get PDF
    Although specular objects have gained interest in recent years, virtually no approaches exist for markerless reconstruction of reflective scenes in the wild. In this work, we present a practical approach to capturing normal maps in real-world scenes using video only. We focus on nearly planar surfaces such as windows, facades from glass or metal, or frames, screens and other indoor objects and show how normal maps of these can be obtained without the use of an artificial calibration object. Rather, we track the reflections of real-world straight lines, while moving with a hand-held or vehicle-mounted camera in front of the object. In contrast to error-prone local edge tracking, we obtain the reflections by a robust, global segmentation technique of an ortho-rectified 3D video cube that also naturally allows efficient user interaction. Then, at each point of the reflective surface, the resulting 2D-curve to 3D-line correspondence provides a novel quadratic constraint on the local surface normal. This allows to globally solve for the shape by integrability and smoothness constraints and easily supports the usage of multiple lines. We demonstrate the technique on several objects and facades

    Multiple View Geometry For Video Analysis And Post-production

    Get PDF
    Multiple view geometry is the foundation of an important class of computer vision techniques for simultaneous recovery of camera motion and scene structure from a set of images. There are numerous important applications in this area. Examples include video post-production, scene reconstruction, registration, surveillance, tracking, and segmentation. In video post-production, which is the topic being addressed in this dissertation, computer analysis of the motion of the camera can replace the currently used manual methods for correctly aligning an artificially inserted object in a scene. However, existing single view methods typically require multiple vanishing points, and therefore would fail when only one vanishing point is available. In addition, current multiple view techniques, making use of either epipolar geometry or trifocal tensor, do not exploit fully the properties of constant or known camera motion. Finally, there does not exist a general solution to the problem of synchronization of N video sequences of distinct general scenes captured by cameras undergoing similar ego-motions, which is the necessary step for video post-production among different input videos. This dissertation proposes several advancements that overcome these limitations. These advancements are used to develop an efficient framework for video analysis and post-production in multiple cameras. In the first part of the dissertation, the novel inter-image constraints are introduced that are particularly useful for scenes where minimal information is available. This result extends the current state-of-the-art in single view geometry techniques to situations where only one vanishing point is available. The property of constant or known camera motion is also described in this dissertation for applications such as calibration of a network of cameras in video surveillance systems, and Euclidean reconstruction from turn-table image sequences in the presence of zoom and focus. We then propose a new framework for the estimation and alignment of camera motions, including both simple (panning, tracking and zooming) and complex (e.g. hand-held) camera motions. Accuracy of these results is demonstrated by applying our approach to video post-production applications such as video cut-and-paste and shadow synthesis. As realistic image-based rendering problems, these applications require extreme accuracy in the estimation of camera geometry, the position and the orientation of the light source, and the photometric properties of the resulting cast shadows. In each case, the theoretical results are fully supported and illustrated by both numerical simulations and thorough experimentation on real data
    corecore