4 research outputs found

    Data Mining Applications: Promise and Challenges

    Get PDF
    Data mining is an emerging field gaining acceptance in research and industry. This is evidenced by an increasing number of research publications, conferences, journals and industry initiatives focused in this field in the recent past. Data mining aims to solve an intricate problem faced by a number of application domains today with the deluge of data that exists and is continually collected, typically, in large electronic databases. That is, to extract useful, meaningful knowledge from these vast data sets. Human analytical capabilities are limited, especially in its ability to analyse large and complex data sets. Data mining provides a number of tools and techniques that enables analysis of such data sets. Data mining incorporates techniques from a number of fields including statistics, machine learning, database management, artificial intelligence, pattern recognition, and data visualisation

    Finding Top- k

    Get PDF
    Diagnostic genes are usually used to distinguish different disease phenotypes. Most existing methods for diagnostic genes finding are based on either the individual or combinatorial discriminative power of gene(s). However, they both ignore the common expression trends among genes. In this paper, we devise a novel sequence rule, namely, top-k irreducible covering contrast sequence rules (TopkIRs for short), which helps to build a sample classifier of high accuracy. Furthermore, we propose an algorithm called MineTopkIRs to efficiently discover TopkIRs. Extensive experiments conducted on synthetic and real datasets show that MineTopkIRs is significantly faster than the previous methods and is of a higher classification accuracy. Additionally, many diagnostic genes discovered provide a new insight into disease diagnosis

    Redundancy based feature selection for microarray data

    Full text link

    Mining phenotypes and informative genes from gene expression data

    No full text
    Mining microarray gene expression data is an important research topic in bioinformatics with broad applications. While most of the previous studies focus on clustering either genes or samples, it is interesting to ask whether we can partition the complete set of samples into exclusive groups (called phenotypes) and find a set of informative genes that can manifest the phenotype structure. In this paper, we propose a new problem of simultaneously mining phenotypes and informative genes from gene expression data. Some statistics-based metrics are proposed to measure the quality of the mining results. Two interesting algorithms are developed: the heuristic search and the mutual reinforcing adjustment method. We present an extensive performance study on both real-world data sets and synthetic data sets. The mining results from the two proposed methods are clearly better than those from the previous methods. They are ready for the real-world applications. Between the two methods, the mutual reinforcing adjustment method is in general more scalable, more effective and with better quality of the mining results
    corecore