1,857 research outputs found

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    Survey of Machine Learning Techniques for Malware Analysis

    Get PDF
    Coping with malware is getting more and more challenging, given their relentless growth in complexity and volume. One of the most common approaches in literature is using machine learning techniques, to automatically learn models and patterns behind such complexity, and to develop technologies for keeping pace with the speed of development of novel malware. This survey aims at providing an overview on the way machine learning has been used so far in the context of malware analysis. We systematize surveyed papers according to their objectives (i.e., the expected output, what the analysis aims to), what information about malware they specifically use (i.e., the features), and what machine learning techniques they employ (i.e., what algorithm is used to process the input and produce the output). We also outline a number of problems concerning the datasets used in considered works, and finally introduce the novel concept of malware analysis economics, regarding the study of existing tradeoffs among key metrics, such as analysis accuracy and economical costs

    Who you gonna call? Analyzing Web Requests in Android Applications

    Full text link
    Relying on ubiquitous Internet connectivity, applications on mobile devices frequently perform web requests during their execution. They fetch data for users to interact with, invoke remote functionalities, or send user-generated content or meta-data. These requests collectively reveal common practices of mobile application development, like what external services are used and how, and they point to possible negative effects like security and privacy violations, or impacts on battery life. In this paper, we assess different ways to analyze what web requests Android applications make. We start by presenting dynamic data collected from running 20 randomly selected Android applications and observing their network activity. Next, we present a static analysis tool, Stringoid, that analyzes string concatenations in Android applications to estimate constructed URL strings. Using Stringoid, we extract URLs from 30, 000 Android applications, and compare the performance with a simpler constant extraction analysis. Finally, we present a discussion of the advantages and limitations of dynamic and static analyses when extracting URLs, as we compare the data extracted by Stringoid from the same 20 applications with the dynamically collected data
    corecore