202,539 research outputs found

    Dynamic User-Oriented Role-Based Access Control Model (DUO-RBAC)

    Get PDF
    Most researchers now trend to use role mining to generate role-based access control model from the existing user-permission assignments. User-oriented role-based access control is a type of role-based access control model, which aims to use role mining from end user perspective to generate a user-oriented RBAC model, since the user almost prefer a simple and minimum role assignments. This research is the first for generating a dynamic user-oriented rolebased access control model (DUO-RBAC) for inserting a new user-permission assignments (new UPA) to the existing user-oriented RBAC model. In a quick clarification, if there is a system which has user-permission assignments, a user-oriented RBAC model can be generated which contains new roles, each one assigns to users and permissions. Then, if we have a new users with new permissions should enter the system which has the model, we will regenerate a new model with new roles assignments to include these new users. Re-generating roles will be done by our dynamic model, with three constraints. First, there are no changes in the number of role assignments for each user in the system after the inserting process, since the user will be conflicted if he has different number of roles from time to time. Second, the permissions that each user has before the inserting process must be the same after generating the new model. Last one, will take into account that each user assign to number of roles no more than t (maximum number of roles that each user can assign), where t is predefined in the existing user-oriented RBAC model. Also, we develop a new algorithm, which based on user-oriented role mining to find the optimal way for inserting the new user permission assignments to the existing model. Our experiments applied on benchmark “Access Control” real datasets to evaluate the results and show the effectiveness of our developed algorithm of several measures. Those measures are: optimal number of roles to make the objective function minimized, optimal number of user-role assignments and generating a new model from end user perspective (keep the new generated model suitable from end-user perspective)

    A SEMANTIC BASED POLICY MANAGEMENT FRAMEWORK FOR CLOUD COMPUTING ENVIRONMENTS

    Get PDF
    Cloud computing paradigm has gained tremendous momentum and generated intensive interest. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this dissertation, we mainly focus on issues related to policy management and access control in the cloud. Currently, users have to use diverse access control mechanisms to protect their data when stored on the cloud service providers (CSPs). Access control policies may be specified in different policy languages and heterogeneity of access policies pose significant problems.An ideal policy management system should be able to work with all data regardless of where they are stored. Semantic Web technologies when used for policy management, can help address the crucial issues of interoperability of heterogeneous CSPs. In this dissertation, we propose a semantic based policy management framework for cloud computing environments which consists of two main components, namely policy management and specification component and policy evolution component. In the policy management and specification component, we first introduce policy management as a service (PMaaS), a cloud based policy management framework that give cloud users a unified control point for specifying authorization policies, regardless of where the data is stored. Then, we present semantic based policy management framework which enables users to specify access control policies using semantic web technologies and helps address heterogeneity issues of cloud computing environments. We also model temporal constraints and restrictions in GTRBAC using OWL and show how ontologies can be used to specify temporal constraints. We present a proof of concept implementation of the proposed framework and provide some performance evaluation. In the policy evolution component, we propose to use role mining techniques to deal with policy evolution issues and present StateMiner, a heuristic algorithm to find an RBAC state as close as possible to both the deployed RBAC state and the optimal state. We also implement the proposed algorithm and perform some experiments to demonstrate its effectiveness

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Identifying and Evaluating Change Patterns and Change Support Features in Process-Aware Information Systems.

    Get PDF
    In order to provide effective support, the introduction of process-aware information systems (PAIS) must not freeze existing business processes. Instead PAIS should allow authorized users to flexibly deviate from the predefined processes if required and to evolve business processes in a controlled manner over time. Many software vendors promise flexible system solutions for realizing such adaptive PAIS, but are often unable to cope with fundamental issues elated to process change (e.g., correctness and robustness). The existence of different process support paradigms and the lack of methods for comparing existing change approaches makes it difficult for PAIS engineers to choose the adequate technology. In this paper we suggest a set of changes patterns and change support features to foster systematic comparison of existing process management technology with respect to change support. Based on these change patterns and features, we provide a detailed analysis and evaluation of selected systems from both academia and industry

    To share or not to share: Publication and quality assurance of research data outputs. A report commissioned by the Research Information Network

    No full text
    A study on current practices with respect to data creation, use, sharing and publication in eight research disciplines (systems biology, genomics, astronomy, chemical crystallography, rural economy and land use, classics, climate science and social and public health science). The study looked at data creation and care, motivations for sharing data, discovery, access and usability of datasets and quality assurance of data in each discipline
    corecore