30,265 research outputs found

    Traveling Trends: Social Butterflies or Frequent Fliers?

    Full text link
    Trending topics are the online conversations that grab collective attention on social media. They are continually changing and often reflect exogenous events that happen in the real world. Trends are localized in space and time as they are driven by activity in specific geographic areas that act as sources of traffic and information flow. Taken independently, trends and geography have been discussed in recent literature on online social media; although, so far, little has been done to characterize the relation between trends and geography. Here we investigate more than eleven thousand topics that trended on Twitter in 63 main US locations during a period of 50 days in 2013. This data allows us to study the origins and pathways of trends, how they compete for popularity at the local level to emerge as winners at the country level, and what dynamics underlie their production and consumption in different geographic areas. We identify two main classes of trending topics: those that surface locally, coinciding with three different geographic clusters (East coast, Midwest and Southwest); and those that emerge globally from several metropolitan areas, coinciding with the major air traffic hubs of the country. These hubs act as trendsetters, generating topics that eventually trend at the country level, and driving the conversation across the country. This poses an intriguing conjecture, drawing a parallel between the spread of information and diseases: Do trends travel faster by airplane than over the Internet?Comment: Proceedings of the first ACM conference on Online social networks, pp. 213-222, 201

    Structure and Dynamics of Information Pathways in Online Media

    Full text link
    Diffusion of information, spread of rumors and infectious diseases are all instances of stochastic processes that occur over the edges of an underlying network. Many times networks over which contagions spread are unobserved, and such networks are often dynamic and change over time. In this paper, we investigate the problem of inferring dynamic networks based on information diffusion data. We assume there is an unobserved dynamic network that changes over time, while we observe the results of a dynamic process spreading over the edges of the network. The task then is to infer the edges and the dynamics of the underlying network. We develop an on-line algorithm that relies on stochastic convex optimization to efficiently solve the dynamic network inference problem. We apply our algorithm to information diffusion among 3.3 million mainstream media and blog sites and experiment with more than 179 million different pieces of information spreading over the network in a one year period. We study the evolution of information pathways in the online media space and find interesting insights. Information pathways for general recurrent topics are more stable across time than for on-going news events. Clusters of news media sites and blogs often emerge and vanish in matter of days for on-going news events. Major social movements and events involving civil population, such as the Libyan's civil war or Syria's uprise, lead to an increased amount of information pathways among blogs as well as in the overall increase in the network centrality of blogs and social media sites.Comment: To Appear at the 6th International Conference on Web Search and Data Mining (WSDM '13

    Cascading Behavior in Large Blog Graphs

    Full text link
    How do blogs cite and influence each other? How do such links evolve? Does the popularity of old blog posts drop exponentially with time? These are some of the questions that we address in this work. Our goal is to build a model that generates realistic cascades, so that it can help us with link prediction and outlier detection. Blogs (weblogs) have become an important medium of information because of their timely publication, ease of use, and wide availability. In fact, they often make headlines, by discussing and discovering evidence about political events and facts. Often blogs link to one another, creating a publicly available record of how information and influence spreads through an underlying social network. Aggregating links from several blog posts creates a directed graph which we analyze to discover the patterns of information propagation in blogspace, and thereby understand the underlying social network. Not only are blogs interesting on their own merit, but our analysis also sheds light on how rumors, viruses, and ideas propagate over social and computer networks. Here we report some surprising findings of the blog linking and information propagation structure, after we analyzed one of the largest available datasets, with 45,000 blogs and ~ 2.2 million blog-postings. Our analysis also sheds light on how rumors, viruses, and ideas propagate over social and computer networks. We also present a simple model that mimics the spread of information on the blogosphere, and produces information cascades very similar to those found in real life

    Conditional Reliability in Uncertain Graphs

    Full text link
    Network reliability is a well-studied problem that requires to measure the probability that a target node is reachable from a source node in a probabilistic (or uncertain) graph, i.e., a graph where every edge is assigned a probability of existence. Many approaches and problem variants have been considered in the literature, all assuming that edge-existence probabilities are fixed. Nevertheless, in real-world graphs, edge probabilities typically depend on external conditions. In metabolic networks a protein can be converted into another protein with some probability depending on the presence of certain enzymes. In social influence networks the probability that a tweet of some user will be re-tweeted by her followers depends on whether the tweet contains specific hashtags. In transportation networks the probability that a network segment will work properly or not might depend on external conditions such as weather or time of the day. In this paper we overcome this limitation and focus on conditional reliability, that is assessing reliability when edge-existence probabilities depend on a set of conditions. In particular, we study the problem of determining the k conditions that maximize the reliability between two nodes. We deeply characterize our problem and show that, even employing polynomial-time reliability-estimation methods, it is NP-hard, does not admit any PTAS, and the underlying objective function is non-submodular. We then devise a practical method that targets both accuracy and efficiency. We also study natural generalizations of the problem with multiple source and target nodes. An extensive empirical evaluation on several large, real-life graphs demonstrates effectiveness and scalability of the proposed methods.Comment: 14 pages, 13 figure

    Topicality and Social Impact: Diverse Messages but Focused Messengers

    Full text link
    Are users who comment on a variety of matters more likely to achieve high influence than those who delve into one focused field? Do general Twitter hashtags, such as #lol, tend to be more popular than novel ones, such as #instantlyinlove? Questions like these demand a way to detect topics hidden behind messages associated with an individual or a hashtag, and a gauge of similarity among these topics. Here we develop such an approach to identify clusters of similar hashtags by detecting communities in the hashtag co-occurrence network. Then the topical diversity of a user's interests is quantified by the entropy of her hashtags across different topic clusters. A similar measure is applied to hashtags, based on co-occurring tags. We find that high topical diversity of early adopters or co-occurring tags implies high future popularity of hashtags. In contrast, low diversity helps an individual accumulate social influence. In short, diverse messages and focused messengers are more likely to gain impact.Comment: 9 pages, 7 figures, 6 table

    Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams

    Full text link
    Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We introduce an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events. We describe a Web service that leverages this framework to track political memes in Twitter and help detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We present some cases of abusive behaviors uncovered by our service. Finally, we discuss promising preliminary results on the detection of suspicious memes via supervised learning based on features extracted from the topology of the diffusion networks, sentiment analysis, and crowdsourced annotations
    • …
    corecore