1,328 research outputs found

    Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need!

    Full text link
    Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at \url{http://github.com/UKPLab/coling2018-xling_argument_mining}.Comment: Accepted at Coling 201

    Character-level and syntax-level models for low-resource and multilingual natural language processing

    Get PDF
    There are more than 7000 languages in the world, but only a small portion of them benefit from Natural Language Processing resources and models. Although languages generally present different characteristics, “cross-lingual bridges” can be exploited, such as transliteration signals and word alignment links. Such information, together with the availability of multiparallel corpora and the urge to overcome language barriers, motivates us to build models that represent more of the world’s languages. This thesis investigates cross-lingual links for improving the processing of low-resource languages with language-agnostic models at the character and syntax level. Specifically, we propose to (i) use orthographic similarities and transliteration between Named Entities and rare words in different languages to improve the construction of Bilingual Word Embeddings (BWEs) and named entity resources, and (ii) exploit multiparallel corpora for projecting labels from high- to low-resource languages, thereby gaining access to weakly supervised processing methods for the latter. In the first publication, we describe our approach for improving the translation of rare words and named entities for the Bilingual Dictionary Induction (BDI) task, using orthography and transliteration information. In our second work, we tackle BDI by enriching BWEs with orthography embeddings and a number of other features, using our classification-based system to overcome script differences among languages. The third publication describes cheap cross-lingual signals that should be considered when building mapping approaches for BWEs since they are simple to extract, effective for bootstrapping the mapping of BWEs, and overcome the failure of unsupervised methods. The fourth paper shows our approach for extracting a named entity resource for 1340 languages, including very low-resource languages from all major areas of linguistic diversity. We exploit parallel corpus statistics and transliteration models and obtain improved performance over prior work. Lastly, the fifth work models annotation projection as a graph-based label propagation problem for the part of speech tagging task. Part of speech models trained on our labeled sets outperform prior work for low-resource languages like Bambara (an African language spoken in Mali), Erzya (a Uralic language spoken in Russia’s Republic of Mordovia), Manx (the Celtic language of the Isle of Man), and Yoruba (a Niger-Congo language spoken in Nigeria and surrounding countries)

    Arabic-English Text Translation Leveraging Hybrid NER

    Get PDF

    D4.1. Technologies and tools for corpus creation, normalization and annotation

    Get PDF
    The objectives of the Corpus Acquisition and Annotation (CAA) subsystem are the acquisition and processing of monolingual and bilingual language resources (LRs) required in the PANACEA context. Therefore, the CAA subsystem includes: i) a Corpus Acquisition Component (CAC) for extracting monolingual and bilingual data from the web, ii) a component for cleanup and normalization (CNC) of these data and iii) a text processing component (TPC) which consists of NLP tools including modules for sentence splitting, POS tagging, lemmatization, parsing and named entity recognition

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Cross-language Information Retrieval

    Full text link
    Two key assumptions shape the usual view of ranked retrieval: (1) that the searcher can choose words for their query that might appear in the documents that they wish to see, and (2) that ranking retrieved documents will suffice because the searcher will be able to recognize those which they wished to find. When the documents to be searched are in a language not known by the searcher, neither assumption is true. In such cases, Cross-Language Information Retrieval (CLIR) is needed. This chapter reviews the state of the art for CLIR and outlines some open research questions.Comment: 49 pages, 0 figure

    Multilingual representations and models for improved low-resource language processing

    Get PDF
    Word representations are the cornerstone of modern NLP. Representing words or characters using real-valued vectors as static representations that can capture the Semantics and encode the meaning has been popular among researchers. In more recent years, Pretrained Language Models using large amounts of data and creating contextualized representations achieved great performance in various tasks such as Semantic Role Labeling. These large pretrained language models are capable of storing and generalizing information and can be used as knowledge bases. Language models can produce multilingual representations while only using monolingual data during training. These multilingual representations can be beneficial in many tasks such as Machine Translation. Further, knowledge extraction models that only relied on information extracted from English resources, can now benefit from extra resources in other languages. Although these results were achieved for high-resource languages, there are thousands of languages that do not have large corpora. Moreover, for other tasks such as machine translation, if large monolingual data is not available, the models need parallel data, which is scarce for most languages. Further, many languages lack tokenization models, and splitting the text into meaningful segments such as words is not trivial. Although using subwords helps the models to have better coverage over unseen data and new words in the vocabulary, generalizing over low-resource languages with different alphabets and grammars is still a challenge. This thesis investigates methods to overcome these issues for low-resource languages. In the first publication, we explore the degree of multilinguality in multilingual pretrained language models. We demonstrate that these language models can produce high-quality word alignments without using parallel training data, which is not available for many languages. In the second paper, we extract word alignments for all available language pairs in the public bible corpus (PBC). Further, we created a tool for exploring these alignments which are especially helpful in studying low-resource languages. The third paper investigates word alignment in multiparallel corpora and exploits graph algorithms for extracting new alignment edges. In the fourth publication, we propose a new model to iteratively generate cross-lingual word embeddings and extract word alignments when only small parallel corpora are available. Lastly, the fifth paper finds that aggregation of different granularities of text can improve word alignment quality. We propose using subword sampling to produce such granularities
    • …
    corecore