3 research outputs found

    Mining frequent closed rooted trees

    Get PDF
    Many knowledge representation mechanisms are based on tree-like structures, thus symbolizing the fact that certain pieces of information are related in one sense or another. There exists a well-studied process of closure-based data mining in the itemset framework: we consider the extension of this process into trees. We focus mostly on the case where labels on the nodes are nonexistent or unreliable, and discuss algorithms for closurebased mining that only rely on the root of the tree and the link structure. We provide a notion of intersection that leads to a deeper understanding of the notion of support-based closure, in terms of an actual closure operator. We describe combinatorial characterizations and some properties of ordered trees, discuss their applicability to unordered trees, and rely on them to design efficient algorithms for mining frequent closed subtrees both in the ordered and the unordered settings. Empirical validations and comparisons with alternative algorithms are provided.Postprint (author’s final draft

    Mining frequent closed unordered trees through natural representations

    No full text
    Abstract. Many knowledge representation mechanisms consist of linkbased structures; they may be studied formally by means of unordered trees. Here we consider the case where labels on the nodes are nonexistent or unreliable, and propose data mining processes focusing on just the link structure. We propose a representation of ordered trees, describe a combinatorial characterization and some properties, and use them to propose an efficient algorithm for mining frequent closed subtrees from a set of input trees. Then we focus on unordered trees, and show that intrinsic characterizations of our representation provide for a way of avoiding the repeated exploration of unordered trees, and then we give an efficient algorithm for mining frequent closed unordered trees.
    corecore