5 research outputs found

    A Topic Recommender for Journalists

    Get PDF
    The way in which people acquire information on events and form their own opinion on them has changed dramatically with the advent of social media. For many readers, the news gathered from online sources become an opportunity to share points of view and information within micro-blogging platforms such as Twitter, mainly aimed at satisfying their communication needs. Furthermore, the need to deepen the aspects related to news stimulates a demand for additional information which is often met through online encyclopedias, such as Wikipedia. This behaviour has also influenced the way in which journalists write their articles, requiring a careful assessment of what actually interests the readers. The goal of this paper is to present a recommender system, What to Write and Why, capable of suggesting to a journalist, for a given event, the aspects still uncovered in news articles on which the readers focus their interest. The basic idea is to characterize an event according to the echo it receives in online news sources and associate it with the corresponding readers’ communicative and informative patterns, detected through the analysis of Twitter and Wikipedia, respectively. Our methodology temporally aligns the results of this analysis and recommends the concepts that emerge as topics of interest from Twitter and Wikipedia, either not covered or poorly covered in the published news articles

    Mining and Managing Large-Scale Temporal Graphs

    Get PDF
    Large-scale temporal graphs are everywhere in our daily life. From online social networks, mobile networks, brain networks to computer systems, entities in these large complex systems communicate with each other, and their interactions evolve over time. Unlike traditional graphs, temporal graphs are dynamic: both topologies and attributes on nodes/edges may change over time. On the one hand, the dynamics have inspired new applications that rely on mining and managing temporal graphs. On the other hand, the dynamics also raise new technical challenges. First, it is difficult to discover or retrieve knowledge from complex temporal graph data. Second, because of the extra time dimension, we also face new scalability problems. To address these new challenges, we need to develop new methods that model temporal information in graphs so that we can deliver useful knowledge, new queries with temporal and structural constraints where users can obtain the desired knowledge, and new algorithms that are cost-effective for both mining and management tasks.In this dissertation, we discuss our recent works on mining and managing large-scale temporal graphs.First, we investigate two mining problems, including node ranking and link prediction problems. In these works, temporal graphs are applied to model the data generated from computer systems and online social networks. We formulate data mining tasks that extract knowledge from temporal graphs. The discovered knowledge can help domain experts identify critical alerts in system monitoring applications and recover the complete traces for information propagation in online social networks. To address computation efficiency problems, we leverage the unique properties in temporal graphs to simplify mining processes. The resulting mining algorithms scale well with large-scale temporal graphs with millions of nodes and billions of edges. By experimental studies over real-life and synthetic data, we confirm the effectiveness and efficiency of our algorithms.Second, we focus on temporal graph management problems. In these study, temporal graphs are used to model datacenter networks, mobile networks, and subscription relationships between stream queries and data sources. We formulate graph queries to retrieve knowledge that supports applications in cloud service placement, information routing in mobile networks, and query assignment in stream processing system. We investigate three types of queries, including subgraph matching, temporal reachability, and graph partitioning. By utilizing the relatively stable components in these temporal graphs, we develop flexible data management techniques to enable fast query processing and handle graph dynamics. We evaluate the soundness of the proposed techniques by both real and synthetic data. Through these study, we have learned valuable lessons. For temporal graph mining, temporal dimension may not necessarily increase computation complexity; instead, it may reduce computation complexity if temporal information can be wisely utilized. For temporal graph management, temporal graphs may include relatively stable components in real applications, which can help us develop flexible data management techniques that enable fast query processing and handle dynamic changes in temporal graphs

    Mining evolving network processes

    No full text
    Abstract—Processes within real world networks evolve according to the underlying graph structure. A bounty of examples exists in diverse network genres: botnet communication growth, moving traffic jams [25], information foraging [37] in document networks (WWW and Wikipedia), and spread of viral memes or opinions in social networks. The network structure in all the above examples remains relatively fixed, while the shape, size and position of the affected network regions change gradually with time. Traffic jams grow, move, shrink and eventually disappear. Public attention shifts among current hot topics inducing a similar shift of highly accessed Wikipedia articles. Discovery of such smoothly evolving network processes has the potential to expose the intrinsic mechanisms of complex network dynamics, enable new data-driven models and improve network design. We introduce the novel problem of Mining smoothly evolving processes (MINESMOOTH) in networks with dynamic real-valued node/edge weights. We show that ensuring smooth transitions in the solution is NP-hard even on restricted network structures such as trees. We propose an efficient filtering-based framework, called LEGATO. It achieves 3−7 times improvement in the obtained process scores (i.e. larger and stronger-impact processes) compared to alternatives on real networks, and above 80 % accuracy in discovering realistic “embedded ” processes in synthetic networks. In transportation networks, LEGATO discovers processes that conform to existing theoretical models for traffic jams, while its obtained processes in Wikipedia reveal the temporal evolution of information seeking of Internet users. I
    corecore