318 research outputs found

    Mining Discriminative Triplets of Patches for Fine-Grained Classification

    Full text link
    Fine-grained classification involves distinguishing between similar sub-categories based on subtle differences in highly localized regions; therefore, accurate localization of discriminative regions remains a major challenge. We describe a patch-based framework to address this problem. We introduce triplets of patches with geometric constraints to improve the accuracy of patch localization, and automatically mine discriminative geometrically-constrained triplets for classification. The resulting approach only requires object bounding boxes. Its effectiveness is demonstrated using four publicly available fine-grained datasets, on which it outperforms or achieves comparable performance to the state-of-the-art in classification

    Part-based Multi-stream Model for Vehicle Searching

    Full text link
    Due to the enormous requirement in public security and intelligent transportation system, searching an identical vehicle has become more and more important. Current studies usually treat vehicle as an integral object and then train a distance metric to measure the similarity among vehicles. However, these raw images may be exactly similar to ones with different identification and include some pixels in background that may disturb the distance metric learning. In this paper, we propose a novel and useful method to segment an original vehicle image into several discriminative foreground parts, and these parts consist of some fine grained regions that are named discriminative patches. After that, these parts combined with the raw image are fed into the proposed deep learning network. We can easily measure the similarity of two vehicle images by computing the Euclidean distance of the features from FC layer. Two main contributions of this paper are as follows. Firstly, a method is proposed to estimate if a patch in a raw vehicle image is discriminative or not. Secondly, a new Part-based Multi-Stream Model (PMSM) is designed and optimized for vehicle retrieval and re-identification tasks. We evaluate the proposed method on the VehicleID dataset, and the experimental results show that our method can outperform the baseline.Comment: Published in International Conference on Pattern Recognition 201

    Unsupervised Learning of Visual Representations using Videos

    Full text link
    Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present a simple yet surprisingly powerful approach for unsupervised learning of CNN. Specifically, we use hundreds of thousands of unlabeled videos from the web to learn visual representations. Our key idea is that visual tracking provides the supervision. That is, two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object or object part. We design a Siamese-triplet network with a ranking loss function to train this CNN representation. Without using a single image from ImageNet, just using 100K unlabeled videos and the VOC 2012 dataset, we train an ensemble of unsupervised networks that achieves 52% mAP (no bounding box regression). This performance comes tantalizingly close to its ImageNet-supervised counterpart, an ensemble which achieves a mAP of 54.4%. We also show that our unsupervised network can perform competitively in other tasks such as surface-normal estimation

    Deep Unsupervised Similarity Learning using Partially Ordered Sets

    Full text link
    Unsupervised learning of visual similarities is of paramount importance to computer vision, particularly due to lacking training data for fine-grained similarities. Deep learning of similarities is often based on relationships between pairs or triplets of samples. Many of these relations are unreliable and mutually contradicting, implying inconsistencies when trained without supervision information that relates different tuples or triplets to each other. To overcome this problem, we use local estimates of reliable (dis-)similarities to initially group samples into compact surrogate classes and use local partial orders of samples to classes to link classes to each other. Similarity learning is then formulated as a partial ordering task with soft correspondences of all samples to classes. Adopting a strategy of self-supervision, a CNN is trained to optimally represent samples in a mutually consistent manner while updating the classes. The similarity learning and grouping procedure are integrated in a single model and optimized jointly. The proposed unsupervised approach shows competitive performance on detailed pose estimation and object classification.Comment: Accepted for publication at IEEE Computer Vision and Pattern Recognition 201

    Discriminative Feature Learning with Application to Fine-grained Recognition

    Get PDF
    For various computer vision tasks, finding suitable feature representations is fundamental. Fine-grained recognition, distinguishing sub-categories under the same super-category (e.g., bird species, car makes and models, etc.), serves as a good task to study discriminative feature learning for visual recognition task. The main reason is that the inter-class variations between fine-grained categories are very subtle and even smaller than intra-class variations caused by pose or deformation. This thesis focuses on tasks mostly related to fine-grained categories. After briefly discussing our earlier attempt to capture subtle visual differences using sparse/low-rank analysis, the main part of the thesis reflects the trends in the past a few years as deep learning prevails. In the first part of the thesis, we address the problem of fine-grained recognition via a patch-based framework built upon Convolutional Neural Network (CNN) features. We introduce triplets of patches with two geometric constraints to improve the accuracy of patch localization, and automatically mine discriminative geometrically-constrained triplets for recognition. In the second part we begin to learn discriminative features in an end-to-end fashion. We propose a supervised feature learning approach, Label Consistent Neural Network, which enforces direct supervision in late hidden layers. We associate each neuron in a hidden layer with a particular class and encourage it to be activated for input signals from the same class by introducing a label consistency regularization. This label consistency constraint makes the features more discriminative and tends to faster convergence. The third part proposes a more sophisticated and effective end-to-end network specifically designed for fine-grained recognition, which learns discriminative patches within a CNN. We show that patch-level learning capability of CNN can be enhanced by learning a bank of convolutional filters that capture class-specific discriminative patches without extra part or bounding box annotations. Such a filter bank is well structured, properly initialized and discriminatively learned through a novel asymmetric multi-stream architecture with convolutional filter supervision and a non-random layer initialization. In the last part we goes beyond obtaining category labels and study the problem of continuous 3D pose estimation for fine-grained object categories. We augment three existing popular fine-grained recognition datasets by annotating each instance in the image with corresponding fine-grained 3D shape and ground-truth 3D pose. We cast the problem into a detection framework based on Faster/Mask R-CNN. To utilize the 3D information, we also introduce a novel 3D representation, named as location field, that is effective for representing 3D shapes
    • …
    corecore