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For various computer vision tasks, finding suitable feature representations

is fundamental. Fine-grained recognition, distinguishing sub-categories under the

same super-category (e.g., bird species, car makes and models etc.), serves as a

good task to study discriminative feature learning for visual recognition task. The

main reason is that the inter-class variations between fine-grained categories are very

subtle and even smaller than intra-class variations caused by pose or deformation.

This thesis focuses on tasks mostly related to fine-grained categories. Af-

ter briefly discussing our earlier attempt to capture subtle visual differences using

sparse/low-rank analysis, the main part of the thesis reflects the trends in the past

a few years as deep learning prevails.

In the first part of the thesis, we address the problem of fine-grained recogni-

tion via a patch-based framework built upon Convolutional Neural Network (CNN)

features. We introduce triplets of patches with two geometric constraints to im-

prove the accuracy of patch localization, and automatically mine discriminative



geometrically-constrained triplets for recognition.

In the second part we begin to learn discriminative features in an end-to-end

fashion. We propose a supervised feature learning approach, Label Consistent Neu-

ral Network, which enforces direct supervision in late hidden layers. We associate

each neuron in a hidden layer with a particular class and encourage it to be activated

for input signals from the same class by introducing a label consistency regulariza-

tion. This label consistency constraint makes the features more discriminative and

tends to faster convergence.

The third part proposes a more sophisticated and effective end-to-end network

specifically designed for fine-grained recognition, which learns discriminative patches

within a CNN. We show that patch-level learning capability of CNN can be enhanced

by learning a bank of convolutional filters that capture class-specific discriminative

patches without extra part or bounding box annotations. Such a filter bank is

well structured, properly initialized and discriminatively learned through a novel

asymmetric multi-stream architecture with convolutional filter supervision and a

non-random layer initialization.

In the last part we goes beyond obtaining category labels and study the prob-

lem of continuous 3D pose estimation for fine-grained object categories. We augment

three existing popular fine-grained recognition datasets by annotating each instance

in the image with corresponding fine-grained 3D shape and ground-truth 3D pose.

We cast the problem into a detection framework based on Faster/Mask R-CNN. To

utilize the 3D information, we also introduce a novel 3D representation, named as

location field, that is effective for representing 3D shapes.
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Chapter 1: Introduction

1.1 Background and Motivation

Visual Feature Learning Learning suitable feature representations lies at the

core of various computer vision tasks. In terms of image recognition, the fundamen-

tal challenge is to make the features discriminative. Recent years have seen dramatic

changes in feature learing for image recognition. Earlier multi-stage frameworks ex-

tract hand-crafted local feature descriptors from raw image, and encode them into

an image-level feature vector as the input to a classifier. After the breakthrough

of Convolutional Neural Network (CNN) in 2012, visual recognition has gradually

shifted from multi-stage frameworks to the end-to-end deep learning frameworks.

In these frameworks, the low-level feature extraction, mid-level feature encoding

and high-level classification are integrated into a single neural network and trained

end-to-end using back-propogation.

Fine-grained Recognition At the same time around 2012, a new type of

recognition task, fine-grained recognition, was proposed, which aims to distinguish

large numbers of sub-categories from the same super-category (e.g.bird species, dog

breeds, makes and models of cars and aircrafts). It serves as a good task to study dis-

criminative feature learning for two reasons. The main reason is that the inter-class
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variations between fine-grained categories are very subtle and even much smaller

than intra-class variations caused by pose and deformation. The second reason is

that the number of training samples per class is small while the number of classes is

large, since fine-grained category labels need expert knowledge that are thus more

expensive to obtain. The subtle visual differences and the limited training data

together require higher learning capability from the recognition framework.

Feature Learning for Fine-grained Recognition There have been extensive

efforts on discriminative feature learning for fine-grained recognition during the past

five years, probably due to the fact that classical CNN architectures do not work very

well on the task. Researchers soon found that (i) directly fine-tuning earlier CNN

architectures such as AlexNet did no better than sophisticated feature encoding

with hand-crafted features; (ii) distinguishing subtle differences depends heavily on

discriminative highly-localized regions such as semantic part or patches. Since then,

research on fine-grained recognition can be divided into four eras. The works dur-

ing the first era were multi-stage frameworks depending heavily on semantic part

annotations; in the second era, researchers tried to eliminate the expensive part

annotation and developed various multi-stage frameworks built upon off-the-shelf

CNN feature representations of image regions; the end-to-end CNN-based frame-

works marks the characteristics of the third era; recently, researchers have been

trying to obtain information more than just the category label. The performance

has improved a lot during this process.

Overall Motivation To summarize, the underlying motivation behind fine-

grained recognition research is essentially enhancing the mid-level learning capa-
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bility of the recognition system. For multi-stage frameworks, research was focused

on generating discriminative mid-level features from low-level local descriptors; for

CNN-based approaches, research was focused on designing proper network structures

to improve the learning capabilities of intermediate convolutional layers. In these

ways, the prior that “the problem depends on localized discriminative regions” is

injected into the recognition system, as the approaches of the thesis will show below.

1.2 Approaches

This thesis focuses on tasks mostly related to fine-grained categories. After

briefly discussing our earlier attempt to capture subtle visual differences in Chapter

2, the main part reflects the trends in the past a few years as dicussed above.

Our earlier work in Chapter 2 attempts to capture subtle visual differences

using sparse/low-rank analysis:

Unsupervised Feature Extraction Inspired by Latent Low-Rank Representation La-

tent Low-Rank Representation (Lat LRR) has the empirical capability of identifying

”salient” features. However, the reason behind this feature extraction effect is still

not understood. Its optimization leads to non-unique solutions and has high compu-

tational complexity, limiting its potential in practice. We show that Lat LRR learns

a transformation matrix which suppresses the most significant principal components

corresponding to the largest singular values while preserving the details captured by

the components with relatively smaller singular values. Based on this, we propose

a novel feature extraction method which directly designs the transformation matrix
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and has similar behavior to Lat LRR. Our method has a simple analytical solution

and can achieve better performance with little computational cost. The effectiveness

and efficiency of our method are validated on two face recognition datasets.

Face recognition can be regarded as ultra fine-grained recognition tasks with

less viewpoint variation. In terms of regular fine-grained recognition with larger

viewpoint variation and deformation, an intuitive way is to consider similar sparse/low-

rank techniques in patch-level, since smaller patches are more robust to view-

point/deformation. However, limited progress has been made in this direction. The

main reason might be that sparse/low-rank analysis assumes that a visual descriptor

can be represented by linear combination of a code book of descriptors, and such

linear assumption might not hold for objects more complex than rectified faces. This

lesson inspired us to avoid elegant theoretical background and develop patch-based

framework in a more intuitive way which leads to the work of Chapter 3.

In Chapter 3, we address the problem of fine-grained recognition via a patch-

based framework built upon Convolutional Neural Network (CNN) features:

Mining Discriminative Triplets of Patches for Fine-Grained Classification Fine-

grained classification involves distinguishing between similar sub-categories based

on subtle differences in highly localized regions; therefore, accurate localization of

discriminative regions remains a major challenge. We describe a patch-based frame-

work to address this problem. We introduce triplets of patches with geometric

constraints to improve the accuracy of patch localization, and automatically mine

discriminative geometrically-constrained triplets for classification. The resulting ap-
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proach only requires object bounding boxes. Its effectiveness is demonstrated using

four publicly available fine-grained datasets, on which it outperforms or obtains

comparable results to the state-of-the-art in classification.

Our multi-stage framework using CNN features achieves better performance

compared to two types of baselines: (i) it outperform its counterpart with hand-

crafted features (e.g., HOG) by a huge margin, which means that low-level CNN

features are far more effective than previous hand-crafted ones; (ii) it significantly

outperforms the baseline which finetune the same CNN used for feature extraction.

This further suggests that CNN’s ability to learn mid-level representations is limited

and still has sufficient room to improve. Based on these observations, we have done

extensive works in Chapter 4 and Chapter 5 to enhance the mid-level representation

learning capability of CNN.

Chapter 4 proposes an intuitive way to introduce supervision to intermediate

layers to improve their discriminativeness:

Learning Discriminative Features via Label Consistent Neural Network Deep Con-

volutional Neural Networks (CNN) enforces supervised information only at the out-

put layer, and hidden layers are trained by back propagating the prediction error

from the output layer without explicit supervision. We propose a supervised feature

learning approach, Label Consistent Neural Network, which enforces direct super-

vision in late hidden layers. We associate each neuron in a hidden layer with a

particular class label and encourage it to be activated for input signals from the

same class. More specifically, we introduce a label consistency regularization called
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”discriminative representation error” loss for late hidden layers and combine it with

classification error loss to build our overall objective function. This label consistency

constraint alleviates the common problem of gradient vanishing and tends to faster

convergence; it also makes the features derived from late hidden layers discrimina-

tive enough for classification even using a simple k-NN classifier, since input signals

from the same class will have very similar representations. Experimental results

demonstrate that our approach achieves state-of-the-art performances on several

public benchmarks for action and object category recognition.

In Chapter 5, we proposes a more sophisticated and effective end-to-end net-

work specifically designed for fine-grained recognition, which learns discriminative

patches within a CNN. Compared with the work in Chapter 4, it is both more

effective and more human-interpretable:

Learning a Discriminative Filter Bank within a CNN for Fine-grained Recognition

Compared to earlier multistage frameworks using CNN features, recent end-to-end

deep approaches for fine-grained recognition essentially enhance the mid-level learn-

ing capability of CNNs. Previous approaches achieve this by introducing an auxiliary

network to infuse localization information into the main classification network, or

a sophisticated feature encoding method to capture higher order feature statistics.

We show that mid-level representation learning can be enhanced within the CNN

framework, by learning a bank of convolutional filters that capture class-specific dis-

criminative patches without extra part or bounding box annotations. Such a filter

bank is well structured, properly initialized and discriminatively learned through
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a novel asymmetric multi-stream architecture with convolutional filter supervision

and a non-random layer initialization. Experimental results show that our approach

achieves state-of-the-art on three publicly available fine-grained recognition datasets

(CUB-200-2011, Stanford Cars and FGVC-Aircraft). Ablation studies and visual-

izations are provided to understand our approach.

After obtaining satisfactory results with CNN framework incorporating patch-

level discriminative information, we explore the possible benefits of incorporating

3D information into fine-grained recognition. Limited success has been achieved us-

ing 3D information to help 2D recognition and the observation is that, with current

strong deep neural network architecture and large amount of training data, 2D ap-

pearance information seems sufficient for the recognition task. During exploration,

we found a related interesting problem of estimating the 3D pose for fine-grained

object categories. This category-based pose estimation problem can be applied to

practical scenario of vehicle damage assessment, which registers the fine-grained 3D

model with the 2D car image as the basis for further assessment.

Therefore, following recent trends in visual recognition, we goes beyond cate-

gory label of fine-grained objects in Chapter 6:

Continuous 3D Pose Estimation for Fine-Grained Objects Continuous 3D object

pose estimation from monocular images recently achieves attention in the computer

vision community. With enough number of training data, the deep Convolutional

Neural Networks (CNNs) are able to learn discriminative features to identify the 3D

pose of an object, even with a single image as input. However, due to the expensive
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cost of obtaining high-quality continuous 3D annotations for objects in real images,

most 3D pose estimation dataset are limited to a small amount. Moreover, all

existing datasets are related to generic object types and there is so far no dataset

for fine-grained objects. In this work, we introduce a new large dataset that is able

to benchmark both fine-grained object recognition and 3D object pose estimation.

Specifically, we augment the three existing popular fine-grained recognition dataset

(Stanford Cars, FGVC-Aircraft and CompCars), and annotate each instance in the

image with the corresponding ground truth 3D pose. We then study the multi-task

problem of simultaneous fine-grained object recognition and 3D pose estimation. To

achieve this, we design a new network architecture by modifying the recent state-

of-the-art Mask R-CNN and apply it to the multi-task problem. To utilize the 3D

information, we introduce a novel 3D representation, named as location field, that

we find is very efficient for representing 3D shapes. With the new 3D dataset and

representation, We compare our model with different network structures and obtain

state-of-the-art results on continuous 3D object pose estimation for fine-grained

objects. The new datasets will be released upon acceptance.

1.2.1 Publications

The work in Chapter 2 was accepted by WACV 2015 ; the work in Chapter 3

was accepted by CVPR 2016 ; the work in Chapter 4 was accepted by WACV 2017.

The work in Chapter 5 was accepted by CVPR 2018. The work in Chapter 6 is

currently in preparation for a future submission.
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Chapter 2: Unsupervised Feature Extraction Inspired by Latent Low-

Rank Representation

2.1 Background and Motivation

Recently, Low-Rank Representation (LRR) [12–16] has attracted attention in

the field of unsupervised subspace segmentation [17], since it can effectively cluster

high-dimensional data into low-dimensional subspaces by learning the lowest rank

representation of the data matrix. Among various versions of LRR, Latent Low-

Rank Representation (LatLRR) [1] has the novel ability to extract “salient features”

from visual data, which was interpreted as the deviation of each sample from the

“principal features”.

LatLRR solves the following optimization problem

minimize ‖Z‖∗ + ‖L‖∗ + λ‖E‖1, (2.1)

s.t. X = XZ + LX + E,

where X is the data matrix with each column being one data sample and ‖·‖∗

denotes the nuclear norm. In [1], the authors empirically found out that using

the second term, LX, for classification can significantly improve accuracy, thanks
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to its “salient features”. Although LatLRR originally aimed to improve subspace

clustering and the salient feature extraction effect was just a by-product, it out-

performed many mainstream dimensionality reduction techniques, such as Principal

Component Analysis (PCA) [18], Neighborhood Preserving Embedding (NPE) [19],

Locality Preserving Projection (LPP) [20] and Nonnegative Matrix Factorization

(NMF) [21].

While LatLRR has shown promissing results, it suffers from the following

problems.

• An explanation for its observed capability to identify “salient” features is

unknown, which constrains its potential.

• It has been observed that the solution to (2.1) is not unique, which potentially

reduces its reliability. Zhang et al. [22,23] have derived a closed form solution

to the noiseless version of (2.1), but the reliability problem for “salient” feature

extraction remains.

• The complexity of LatLRR depends on the dimensionality of the feature vec-

tors [1]. Previous improvements to LatLRR have actually increased the com-

plexity of the optimization, such as the introduction of a more complex objec-

tive function [24–26] or more complex constraints [27], which further increases

the computational burden.

We provide an explanation of LatLRR’s feature extraction effect. Based on

this, we propose a new and computationally simpler feature extraction method. The

contributions of this work are twofold.
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• We show that the singular values of L learnt by LatLRR have a reweighting

effect, which suppresses the most significant principal components of data ma-

trix X, while highlighting the detailed information carried by the components

corresponding to X’s relatively smaller singular values.

• Using our characterization of the solutions produced by LatLRR, we design a

new feature extraction method that produces solutions similar to LatLRR, but

with a simple unique analytical solution. Our method outperforms LatLRR

by computing a single SVD decomposition, and thus can be applied to higher

dimensional data.

2.2 Analysis of LatLRR’s Feature Extraction

In this section, we interpret the feature extraction effect of LatLRR, mainly

from the perspective of SVD decompostion.

Suppose X and L have a skinny SVD

X = UXΣXV
T
X and L = ULWLV

T
L . (2.2)

The meaning of “skinny” is that ΣX and WL are square matrices of size rank(X)

and rank(L) respectively, only containing non-zero singular values.

Let li be the ith singular value of L, and vLi (uLi) the ith column of VL (UL).
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Consider the effect of L operating on a single data sample x0:

Lx0 = ULWLV
T
L x0 =

r∑
i=1

li〈vLi, x0〉uLi, (2.3)

where r = rank(L). According to the definition of SVD, by multiplying by L, the

data has been projected onto each column of VL and weighted by the singular values.

Then the weighted projections are used as the coefficients of {uLi}, a subset of an

orthonormal basis of L’s column space. This interpretation of SVD decomposition

lays the foundation of our analysis below.

2.2.1 Preliminary

Recently, Zhang et al. [22] found that the solution to LatLRR is not unique.

Moreover, they derived a closed form solution for the noise free LatLRR

minimize ‖Z‖∗ + ‖L‖∗, s.t. X = XZ + LX. (2.4)

We restate the main result of [22] on noise free LatLRR in the following the-

orem.

Theorem 1. The complete solutions to problem (2.4) must be of the following form

Z = VXWZV
T
X and L = UX(I −WZ)UT

X , (2.5)

where WZ is any block diagonal matrix satisfying: 1. if [ΣX ]ii 6= [ΣX ]jj then [WZ ]ij =
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0; 2. both WZ and I −WZ are positive semi-definite [22].

Notice that in practice the singular values of X are usually distinct, therefore

WZ becomes a diagonal matrix diag{z1, z2, ..., zr} with 0 ≤ zi ≤ 1 for all i. Then

(2.5) becomes equivalent to (2.2), i.e.

UL = VL = UX , WL = I −WZ , (2.6)

r = rank(L) = rank(X),

and the effects of Z and L on X become

XZ = UXΣXWZV
T
X

= UX


z1σX1

. . .

zrσXr

V
T
X (2.7)

LX = UX(I −WZ)ΣXV
T
X

= UX


l1σX1

. . .

lrσXr

V
T
X , (2.8)

where li = 1− zi, σXi is the ith largest singular value of X.
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Moreover, (2.3), the effect of L on a single data x0 becomes

Lx =
r∑
i=1

li〈uXi, x0〉uXi, (2.9)

i.e. the data is projected onto the components {uXi} and weighted by {li}.

From (2.8) and (2.9), as will be shown in Section 2.2.2 and Section 2.2.3, WL =

I −WZ suppresses the components corresponding to very large σXi, and preserves

the ones corresponding to relatively small σXi. Since the orthogonal matrices in (2.5)

are determined as UX and VX , the numerical optimization with respect to Z and L

is essentially learning the singular values {zi} and {li}, resulting in a solution from

the solution set defined by (2.5). This is exactly what LatLRR is accomplishing.

In the rest of this section, we gain insight from an empirical result in Sec-

tion 2.2.2, and then theoretically explore the source of the empirical results in Sec-

tion 2.2.3.

2.2.2 Empirical Analysis

The following phenomenon can provide some insight into LatLRR’s feature

extraction capability. Our empirical results suggest that different optimization or-

dering leads to different reweightings of principal components, which strongly affects

the performance.

In the iterative algorithm described in [1] (the noise free version summarized in

Algorithm 1), within each iteration, Z is updated before L. However, if we update

L before Z in each iteration (exchange Step 3 with Step 4 in Algorithm 1), the

14



0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Singular Values of L

i

 

 

l
1i

 (89% accuracy)

l
2i

 (39% accuracy)

0 100 200 300 400 500 600 700 800 900
10

−2

10
−1

10
0

10
1

10
2

10
3

Original and Reweighted Singular Values of X

i

 

 

σ
Xi

l
1i

σ
Xi

l
2i

σ
Xi

Figure 2.1: The optimization ordering that yields the best performance
(red) down-weights the most significant principal components (low i),
while the other ordering (black) gives them more weight. Top: the sin-
gular values of transformation matrix L. Bottom: the singular values of
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final classification performance decreases significantly (e.g.from approximately 89%

to 39% on Extended Yale Database B).

Let {l1i} be the singular values of L learnt by the original Algorithm 1, and

{l2i} the singular values learnt with the exchanged steps. The singular values of L,

X, and LX are displayed in Figure 2.1 for both cases. For the successful optimization

ordering, the uLi with the largest σXi and largest l1iσXi are displayed in Figure 2.2.

As can be seen from Figure 2.1 and (2.9), {l1i} plays the role of reweighting,

which suppresses the components corresponding to the first several largest σXi’s,

and thus highlights those containing detailed information. On the other hand, how-

ever, l2i put relative small weights on the basis corresponding to small σXi and

mainly preserves the information carried by components with very large σXi, which

significantly reduces the performance. Therefore, the ability of LatLRR to extract

features is related to the weighting effect of {li}.

Our analysis is consistent with the observation made by [28], that dropping the

first three principal components in PCA can effectively improve the classification

accuracy of faces. [28] claimed that the first a few principal components might

mainly capture the variations caused by photometric factors such as illumination

and shadow, therefore removing those irrelevant variations might account for the

effectiveness of such practical technique. LatLRR, which reweights the components,

can be regarded as a “soft version” of dropping the first few components.
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Figure 2.2: An example principal component (left) and the component
corresponding to relatively small σXi (right). On the left is the uXi cor-
responding to the largest σXi, and on the right is the one corresponding
to the largest l1iσXi after reweighting.

Algorithm 1 Solving Problem (2.4) by Inexact ALM

Initialize: Z0 = J0 = 0, L0 = S0 = 0, Y10
= Y20 = Y30 = 0, µ0 > 0. Set parameters (ρ and ε).
while not converged do

1. Fix others and update J by setting Jk+1 =
argminJ

1
µk
‖J‖∗ + 1

2
‖J − (Zk + Y2k/µk)‖2F.

2. Fix others and update S by setting Sk+1 =
argminS

1
µk
‖S‖∗ + 1

2
‖S − (Lk + Y3k/µk)‖2F.

3. Fix others and update Z by setting
Zk+1 = (I +XTX)−1(XT(X − LkX) + Jk+1

+(XTY1k − Y2k)/µk).
4. Fix others and update L by setting
Lk+1 = ((X −XZk+1)X

T + Sk+1 + (Y1kX
T

−Y3k)/µk)(I +XXT)−1

5. Update the mulipliers by
Y1(k+1) = Y1k + µk(X −XZk+1 − Lk+1X),
Y2(k+1) = Y2k + µk(Zk+1 − Jk+1),
Y3(k+1) = Y3k + µk(Lk+1 − Sk+1).
6. Update µ by µk+1 = ρµk.
7. Check the convergence conditions:
‖X −XZk+1 − Lk+1X‖∞ < ε,
‖Zk+1 − Jk+1‖∞ < ε,
and ‖Lk+1 − Sk+1‖∞ < ε.

end while
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2.2.3 Theoretical Analysis

In this subsection, we analyze the inexact Augmented Lagrange Multiplier

(ALM) method [29] adopted by [1], for the noise free LatLRR (2.4), and derive

a closed-form approximate solution that has the same effect as ALM on compo-

nent weighting. Our analysis explains our empirical observations above, where the

singluar values of L suppress the most pincipal uXi’s corresponding to the largest

σXi’s, while preserving the components corresponding to relatively smaller σXi’s. In

the rest of this work, we will keep using the letter i to denote the index of singular

values, while we use letter k to indicate the number of iterations.

LatLRR’s Algorithm Overview

The inexact ALM method is outlined in Algorithm 1. Step 1 and 2 are solved

by singular value thresholding operator [30], i.e.

D1/µ(Y ) = arg min
X

{
1

µ
‖X‖∗ +

1

2
‖X − Y ‖

}
,

= UY diag

{
max

(
0, σY i −

1

µ

)}
V T
Y , (2.10)

where σY i is the ith singular value of Y , whose SVD is

Y = UY diag {σY i}V T
Y .

The only assumption made to simplify the analysis is that ρ is relatively large.

The form of the solution is first given by Proposition 1 and then the specific solution
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is derived from Proposition 2 and 3. Proofs of Propositions 1-3 are provided in the

supplementary material.

Simplification of the Analysis

Proposition 1. During the iteration procedure described in Algorithm 1, Zk and Lk

always keep the form

Zk = VXWZkV
T
X , Lk = UXWLkU

T
X , (2.11)

∀ positive integer k. Where WZk and WLk are r × r diagonal matrices containing

the singular values.

Furthermore, the orthogonal matrices involved in the SVD decomposition of

any matrix in Algorithm 1 must be UX or VX , depending on its shape.

Proposition 1 can be proved easily by induction. It suggests that we can sim-

plify the analysis by only focusing on the singular values of the matrices. Further-

more, in Algorithm 1, singular values with the same index are modified together,

independent from those with different indices, therefore we omit the index i and

only focus on the iteration number k. Let the lower case letters denote the sin-

gular values of their corresponding matrices in upper case letters. For instance,

zk = {zki, i = 1, 2, ..., r} and lk = {lki, i = 1, 2, ..., r} denote the singular values of

Zk and Lk, respectively, and zk + lk = {zki + lki, i = 1, 2, ..., r}. Hence, the iteration

procedure in Algorithm 1 is equivalent to Table 2.1.

Under the assumption that ρ is relatively large, we can simplify the analysis

by omitting the last term on the right side of Step 3 and 4 in Table 2.1, since it can
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Algorithm 1 (Simplified)

Initialize: z0 = j0 = l0 = s0 = y10 = y20 = y30 = 0, µ0 > 0.
while not converged do

1. jk+1 = max{0, zk + y2k/µk − 1/µk}
2. sk+1 = max{0, lk + y3k/µk − 1/µk}
3. zk+1 = 1

1+σ2
X

(σ2
X(1− lk) + jk+1) + σXy1k−y2k

(1+σ2
X)µk

4. lk+1 = 1
1+σ2

X
(σ2

X(1− zk+1) + sk+1) + σXy1k−y3k
(1+σ2

X)µk

5. y1(k+1) = y1k + µkσX(1− zk+1 − lk+1)
y2(k+1) = y2k + µk(zk+1 − jk+1)
y3(k+1) = y3k + µk(lk+1 − sk+1)

6. µk+1 = ρµk
7. Check the convergence conditions.

end while

Table 2.1: The simplification of Algorithm 1 by focusing on the opera-
tions of the singular values.

be proved by induction that

y1k = σX

k∑
t=1

µt−1e1t, y2k =
k∑
t=1

µt−1e2t,

y3k =
k∑
t=1

µt−1e3t, µk = ρkµ0, (2.12)

where e1t = 1− zt − lt, e2t = zt − jt, e3t = lt − st.
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Then the last term on the right side of Step 3 becomes

σXy1k − y2k
(1 + σ2

X)µk

=
k∑
t=1

µt−1
µk

(
σ2
X

1 + σ2
X

e1t −
1

1 + σ2
X

e2t

)

=
k∑
t=1

(
1

ρ

)k+1−t(
σ2
X

1 + σ2
X

e1t −
1

1 + σ2
X

e2t

)

<emax

+∞∑
t=1

(
1

ρ

)t
=

emax

ρ− 1
(2.13)

In practice emax is very small. Therefore (2.13) approaches zero when ρ is relatively

large, and omitting it can provide a simple and good approximation. Through

similar analysis by replacing y2k with y3k, we can obtain the same conclusion for the

last term of Step 4.

Since Step 1 and 2 in Table 2.1 perform thresholding according to the value of

1/µk, we divide the analysis into 2 stages: large 1/µk when µk is very small at the

beginning, and small 1/µk when µk becomes very large by the end of the iteration.

The Closed-Form Solution

When µk is very small, 1/µk is so large that jk+1 = sk+1 = 0. Combine the

approximation upon Step 3 and 4 discussed above, and thus the iteration procedure

is equivalent to

zk+1 = α(1− lk), lk+1 = α(1− zk+1), (2.14)
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where

α =
σ2
X

1 + σ2
X

= 1− 1

1 + σ2
X

, (2.15)

Solving the linear recursive sequence (2.14) gives the following proposition.

Proposition 2. Assuming ρ is relatively large, when µk is small, the iteration pro-

cedure in Table 2.1 is approximately equivalent to (2.14), and the solution after the

kth iteration is as follows.

zk =
α + α2k

1 + α
, lk = α(1− zk) =

α3 + α2k+1

1 + α
, (2.16)

where α is defined by (2.15).

When µk is very large, however, 1/µk ≈ 0 so that

jk+1 = max{0, zk + y2k/µk − 1/µk}

= zk + y2k/µk − 1/µk ≈ zk (2.17)

Similarly, it follows that

sk+1 ≈ lk. (2.18)

Plugging in (2.17) and (2.18) into Step 3 and 4, and adopting the same ap-

proximation as that of Proposition 2, we obtain an equivalent procedure for the
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large-µk case.

zk+1 = α(1− lk) + (1− α)zk, (2.19)

lk+1 = α(1− zk+1) + (1− α)lk,

Proposition 3. Assuming ρ is relatively large, when µk is large, the iteration pro-

cedure in Table 2.1 is approximately equivalent to (2.19). When the iteration termi-

nates, the final results z and l satisfy

z → (1− α)zk0 − lk0 + 1

2− α
, l→ 1− z. (2.20)

where α is defined by (2.15), and k0 is some starting point from which the large-µk

condition holds.

When ρ is relatively large, the transient state between the two stages only

lasts a very short time. Therefore, omitting it can provide a good and simple

approximation to the solution. We pick up a dividing point k0 of the two stages, use

(2.14) to approximate the iterations when k ≤ k0, and use (2.19) to approximate

those when k > k0. Plugging (2.16) into zk0 and lk0 of (2.20), we conclude that,

when the iteration terminates,

z → 1− 1− α2k0

(2− α)(1 + α)
, l→ 1− α2k0

(2− α)(1 + α)
, (2.21)

where α is defined by (2.15) and k0 is the dividing point of the two stages.
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Figure 2.3: l as a function of α given by (2.21). The definition of α is
given in (2.15). For small σX , α approaches 0 and l decreases very slowly
from 1/2; for very large σX , α approaches 1 and l drops very quickly.
Parameter settings: k0 = 6.

According to (2.15), α is monotonically increasing as σX increases from 0 to

infinity. Therefore, when σX approaches 0, α also approaches 0 and l will approach

1/2; when σX approaches infinity, α approaches 1 and l will approach 0. l as a

function of α is displayed in Figure 2.3. As can be seen, for relatively small α,

which corresponds to small σX , l decreases very slowly from 1/2; for α close to 1,

which corresponds to very large σX , l drops very quickly to a small value.

Result Evaluation

According to (2.21), our theoretical result for the ith singular value of L be-

comes

li =
1− α2k0

i

(2− αi)(1 + αi)
, (2.22)

where

αi =
σ2
Xi

1 + σ2
Xi

= 1− 1

1 + σ2
Xi

. (2.23)
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Figure 2.4: The singular values of our theoretical approximation (red)
compared to those achieved by ALM in practice (blue), where li denotes
the ith singular value of L. Our theoretical approximation very closely
models the behavior of ALM. Parameter settings: µ0 = 10−6, ρ = 5,
ε = 10−4 (practice); k0 = 6 (theory).

The comparison between the reweighting behavior of the L matrix according

to theoretical approximation and actual result of ALM is displayed in Figure 2.4.

We plot the singular values of L obtained in practice by Algorithm 1 (displayed in

blue) as well as that calculated theoretically by (2.22) (displayed in red). As can be

seen, the theoretical approximation convincingly explains the behavior of Algorithm

1, and the minor error occuring at the tail is mainly due to the fact that the stopping

criterion of the theoretical analysis is the limit condition of ALM.

From (2.8) and (2.21), we conclude that L can suppress principal components

corresponding to very large σXi’s, by putting near-zero weights on them through

its singular values li’s. On the other hand, for those components corresponding to

relatively small σXi’s, multiplying by L will not affect them too much since the

corresponding li’s are almost constant.
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2.3 Unsupervised Feature Extraction Inspired by Latent Low-rank

Representation

We can now directly design a transformation matrix WZ that behaves similarly

to the original LatLRR algorithm. After WZ has been obtained, with Z and L

constructed according to (2.5), X can be decomposed into a principal part XZ and

a detailed part LX. Then following the approach of LatLRR [1], LX can be used

for classification.

Concretely, the problem boils down to designing the objective function f for

the following problem

minimize f (2.24)

s.t. X = XZ + LX

Z = VXWZV
T
X , L = UX(I −WZ)UT

X ,

WZ = diag(z1, z2, ..., zr), 0 ≤ zi ≤ 1 ∀i,

such that (I −WZ) down-weights the most significant principal components while

preserving the others. To achieve this goal, a suitable objective function should at

least satisfy the following two properties

(i) XZ must contain most information of X, i.e. the error X − XZ cannot be

too large.

(ii) XZ is only allowed to contain the most principal features, which means that
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the columns of XZ must be similar to each other. Thus ‖Z‖∗ cannot be large,

since the nuclear norm reflects low-rank self-expressiveness, which is a very

good similarity measure for multiple samples [17].

Attempting to balance (i) and (ii), a natural objective function is

f = ‖Z‖∗ + λ‖X −XZ‖2F, (2.25)

where λ is a trade-off parameter, which is expected to be small, considering the scale

of the error.

Plugging (2.25) into (2.24), the formulation becomes

minimize ‖Z‖∗ + λ‖X −XZ‖2F, (2.26)

s.t. X = XZ + LX

Z = VXWZV
T
X , L = UX(I −WZ)UT

X ,

WZ = diag(z1, z2, ..., zr), 0 ≤ zi ≤ 1 ∀i.

Since the zi’s are the only independent variables of problem (2.26), we can

eliminate other variables by using singular values to express the norms, which results

in the following equivalent problem.

minimize
r∑
i=1

zi + λ

r∑
i=1

(1− zi)2σ2
Xi (2.27)

s.t. 0 ≤ zi ≤ 1 ∀i.
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Problem (2.27) can be solved analytically as

w∗i =


1− 1

2λσ2
Xi
, σXi ≥

√
1
2λ

0, σXi <
√

1
2λ

(2.28)

The result can be interpreted as follows. For a small σXi, since the information

it adds to XZ is too detailed, its negative contribution to the error is smaller than

its positive contribution to the nuclear norm, therefore it is filtered out by zi = 0.

On the other hand, the larger σXi is, the larger zi will be. This means that the most

significant principal components have been preserved.

In contrast,

l∗i = 1− w∗i = min

{
1

2λσ2
Xi

, 1

}
(2.29)

extracts features corresponding to small σXi’s. Our feature extraction procedure is

summarized in Table 2.2.

Given training data Xtrain

[UX , diag{σXi}, VX ] = svd(Xtrain)

l∗i = min
{

1
2λσ2

Xi
, 1
}

L∗ = UXdiag{l∗i }UT
X

Use L∗Xtrain and L∗Xtest for classification.

Table 2.2: Our feature extraction procedure.
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2.4 Experiments

In this section we evaluate both the performance and efficiency of our method.

We mainly compared our approach with LatLRR, since it has already been reported

in [1] that LatLRR outperforms dimensionality deduction methods such as Locality

Preserving Projection (LPP) [20], Neighborhood Preserving Embedding (NPE) [19]

and Nonnegative Matrix Factorization (NMF) [21] with a large margin (see Table 2

of [1]).

Datasets We tested our feature extraction using both the Extended Yale Database

B [31] and CMU PIE face databases [32], two common datasets for face recognition.

Extended Yale B consists of 2414 frontal face images of 38 individuals, and each

individual has approximately 64 images. For CMU PIE face databases, the subset

of frontal faces (referred to as C27) with different illumination and facial expressions

was used, which contains 3329 images of 68 individuals.

Experimental Settings For fair comparison, we adopted the same settings as [1]

when conducting performance test on Extended Yale Database B. Each image was

resized to 32× 28 and reshaped into a data vector of dimension 896, whose entries

were normalized to [0, 1]. 47% of the randomly split data was used for training and

the rest for testing. After Z∗ and L∗ were learnt, only L∗Xtrain and L∗Xtest were

fed into the K-nearest neighbor classifier (K-NN) based on Euclidean distance. We

implemented and measured our own method with the trade-off parameter λ = 0.02,

while copying the results of LatLRR from [1].
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When conducting the performance test on PIE, the settings remained the same

except for the following: we resized each image to 32× 32 and used 33% of the data

for training; we ran the implementation from the author of [1] to test LatLRR.

To test the efficiency of our method, we recorded the running time of our

method followed by 1-NN classification and compared it with that of LatLRR. This

experiment was performed on Extended Yale Database B, using a machine with two

Intel(R) Xeon(R) E5603 @ 1.6GHz.

Results and Analysis The results of performance tests are displayed in Table

2.3 and Table 2.4. As can be seen, our method has similar behavior to LatLRR: it

largely outperforms the baseline of “Raw Data”, and the product L∗X is a suitable

input for dimensionality reduction techniques such as PCA. In Figure 2.5, we plot

the singular values {l∗i } of L∗ calculated by (2.29), and compare with those learnt

by LatLRR. From Figure 2.5, it becomes clear that our method reaps the benefit of

weighting effect discussed in Section 2.2. Moreover, since our method is specifically

designed for feature extraction, it further outperforms LatLRR, which was originally

designed for subspace clustering. Some examples of using our method to extract

detailed features are displayed in Figure 2.6.

The results of the efficiency test are displayed in Table 2.5. Since our method

only requires a single SVD decomposition, it has an overwhelming advantage over

LatLRR when the dimensions of the feature vectors are the same. With such effi-

ciency, our method can be applied to higher dimensional data.

Brief Summary Specifically designed for feature extraction, our method can
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Figure 2.5: The singular values of L learnt by our method, where li
denotes the ith singular value. By comparing with Figure 2.4, we can see
that our method has the reweighting effect similar to LatLRR.

Raw Data Raw Data+PCA LatLRR LatLRR+PCA Ours Ours+PCA
(317D) (400D) (400D)

1-NN 61.07 61.54 88.76 87.28 93.72 93.09
3-NN 59.81 60.03 87.76 85.95 94.27 93.49
5-NN 58.16 58.54 86.03 85.87 93.88 93.56

Table 2.3: Classification accuracies (%, averaged over 20 runs) on Ex-
tended Yale Database B. For fair comparison, the results related to raw
data and LatLRR are cited from [1], who chose the dimension 317D to
obtain the best result within the range of 400D.

Raw Data Raw Data+PCA LatLRR LatLRR+PCA Ours Ours+PCA
(317D) (400D) (400D)

1-NN 77.52 77.48 94.83 94.83 96.25 96.25
3-NN 71.32 71.32 93.71 93.71 96.12 96.16
5-NN 63.25 63.16 91.21 90.82 96.08 96.03

Table 2.4: Classification accuracies (%, averaged over 20 runs) on CMU
PIE face databases.

achieve better performance than LatLRR with little computational cost, and can

be applied to higher dimensional data effectively.
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Image Size Running Time(s) Accuracy(%) Running Time(s) Accuracy(%)
LatLRR LatLRR Ours Ours

32×28(896D) 160.26 88.78 4.21 93.72
48×42(2016D) 458.28 88.50 10.69 93.38
96×84(8064D) 1097.48 85.61 44.93 94.04

Table 2.5: Results of efficiency test (averaged over 20 runs) on Extended
Yale Database B.

Figure 2.6: The visualization of the decomposition by our method. In
each group of the same individual, the original data X (left) is decom-
posed into a principal part XZ∗ (middle) and a detailed part L∗X (right).
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Chapter 3: Mining Discriminative Triplets of Patches for Fine-Grained

Classification

3.1 Motivation

The task of fine-grained classification is to recognize sub-ordinate categories

belonging to the same super-ordinate category [33–36]. The major challenge is that

fine-grained objects share similar overall appearance and only have subtle differences

in highly localized regions. To effectively and accurately find these discriminative

regions, some previous approaches utilize humans-in-the-loop [37–39], or require

semantic part annotations [40–46] or 3D models [36,47]. These methods are effective,

but they require extra keypoint/part/3D annotations from humans, which are often

expensive to obtain. On the other hand, recent research on discriminative mid-

level visual elements mining [48–52] automatically finds discriminative patches or

regions from a huge pool and uses the responses of those discriminative elements as a

mid-level representation for classification. However, this approach has mainly been

applied to scene classification and not typically to fine-grained classification. This

is probably due to the fact that the discriminative patches needed for fine-grained

categories need to be more accurately localized than for scene classification.
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To avoid the cost of extra annotations, we propose a patch-based approach for

fine-grained classification that overcomes the difficulties of previous discriminative

mid-level approaches. Our approach requires only object bounding box annotations

and belongs to the category of weakly-annotated fine-grained classification [53–60].

Two issues need to be addressed. The first issue is accurately localizing dis-

criminative patches without requiring extra annotations. Localizing a single patch

based only on its appearance remains challenging due to noisy backgrounds, ambigu-

ous repetitive patterns and pose variations. Instead, we localize triplets of patches

with the help of geometric constraints. Previously, triple or higher-order constraints

have been used in image matching and registration [61–63], but they have not been

integrated into a patch-based classification framework. Our triplets consist of three

appearance descriptors and two simple, but efficient, geometric constraints, which

can be used to remove accidental detections that would be encountered if patches

were localized individually. One attractive property of triplets over simpler models

(e.g., pairs) is that they can be used to model rich geometric relationships while

providing additional invariance (e.g., to rotation) or robustness (e.g., to perspective

changes).

The second issue is automatically discovering discriminative geometrically-

constrained triplets from the huge pool of all possible triplets of patches. The key

insight is that fine-grained objects share similar overall appearance. Therefore, if we

retrieve the nearest neighbors of a training image, we obtain samples from different

classes with almost the same pose, from which potentially discriminative regions

can be found. Similar ideas have been adopted in [55, 64–66], but they aggregate
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results obtained from local neighborhood processing without further analysis across

the whole dataset. In contrast, our discriminative triplet mining framework uses

sets of overall similar images to propose potential triplets, and only selects good

ones by measuring their discriminativeness using the whole training set or a large

portion of it.

We evaluate our approach on four publicly available fine-grained datasets and

obtain comparable results to the state-of-the-art without expensive annotation.

3.2 Triplets of Patches with Geometric Constraints

In this section, we discuss two geometric constraints encoded within triplets

of patches and describe a triplet detector incorporating these constraints.

Suppose we have three patch templates TA, TB and TC , with their centers

located at points A, B and C, respectively. Each template Ti (i ∈ {A,B,C}) can

be a feature vector extracted from a single patch or an averaged feature vector

of patches from the corresponding locations of several positive samples. Given an

image, let A′, B′ and C ′ be three patches possibly corresponding to A, B and C,

respectively.

3.2.1 Order Constraint and Shape Constraint

The order constraint encodes the ordering of the three patches (Figure 3.1).

For triplet {A,B,C}, consider the two vectors
−→
AB and

−→
AC. Treating them as three
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dimensional vectors with the third dimension being 0, it follows that

−→
AB ×

−→
AC = (0, 0, ZABC). (3.1)

Let

GABC = sign(ZABC), (3.2)

which indicates whether the three patches are arranged clockwise (GABC = 1) or

counterclockwise (GABC = −1), as can be seen in Figure 3.1. There is a side-test

interpretation of this constraint [67]. If we fix two patches, say B and C, GABC = 1

means that A lies on the left side of the line passing between B and C, while

GABC = −1 indicates A is on the right side. Therefore, a simple penalty function

between {A,B,C} and {A′, B′, C ′} based on the order constraint can be defined as

po(GABC , GA′B′C′) = 1− ηol(GA′B′C′ 6= GABC), (3.3)

where 0 ≤ ηo ≤ 1 controls how important the order constraint is, and the indicator

function is defined as

l(GA′B′C′ 6= GABC) =


1, GA′B′C′ 6= GABC

0, GA′B′C′ = GABC .

(3.4)

Intuitively, po penalizes by ηo when {A′, B′, C ′} violates the order constraint defined

by {A,B,C}.
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Figure 3.1: Visualization of the order constraint. Top: Patch A, B and

C are arranged in clockwise order. The direction of
−→
AB ×

−→
AC points

into the paper, and GABC = 1. Bottom: A′, B′ and C ′ are arranged in
counterclockwise order. The direction of the cross product points out of
the paper, and GA′B′C′ = −1.

A

C

B

A’ C’

B’

Figure 3.2: Visualization of the shape constraint. The constraint com-
pares the three angles of two triplets.
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The shape constraint measures the shape of the triangle defined by three patch

centers (Figure 3.2). Let ΘABC = {θA, θB, θC} denote the angles of triangle ABC,

and ΘA′B′C′ = {θA′ , θB′ , θC′} denote the angles of triangle A′B′C ′, as displayed in

Figure 3.2. We define a shape penalty function by comparing corresponding angles

as

ps(ΘA′B′C′ ,ΘABC)

=1− ηs

∑
i∈{A,B,C}|cos(θi)− cos(θi′)|

6
, (3.5)

where ηs ∈ [0, 1] controls how important the shape constraint is. The denominator

6 in Eq. (3.5) ensures that 0 ≤ ps ≤ 1, since |cos(θi) − cos(θi′)| ≤ 2. {cos(θi)}

and {cos(θi′)} can be easily computed from inner products. The motivation for

introducing this second constraint is that we use the relatively loose order constraint

to perform coarse verification and use the shape constraint for finer adjustments. As

will be demonstrated in Section 3.4.1, the two constraints contain complementary

information.

3.2.2 Triplet Detector

Our triplet detector consists of three appearance models and the two geo-

metric constraints. We construct three linear weights {wA, wB, wC} from the patch

templates {TA, TB, TC}, and our triplet detector becomes

T = {wA, wB, wC , GABC ,ΘABC}. (3.6)
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For any triplet {A′, B′, C ′} with features {TA′ , TB′ , TC′} and geometric parameters

{GA′B′C′ ,ΘA′B′C′}, its detection score is defined as

SA′B′C′ = (SA(T ′A) + SB(T ′B) + SC(T ′C)) · po · ps, (3.7)

where po, ps are defined by Eq. (3.3), Eq. (3.5) respectively, and the appearance

scores are defined as

Si(Ti′) = wT
i Ti′ , i ∈ {A,B,C}. (3.8)

To make triplet detection practical, three technical details must be addressed.

The first is how to efficiently obtain the maximum response of a triplet detector in

an image. In principle, we could examine all possible triplets from the combinations

of all possible patches and simply compute

{A∗, B∗, C∗} = argmax
{A′,B′,C′}

SA′B′C′ . (3.9)

However, this is too expensive since the number of all possible triplets will be O(N3)

for N patches. Instead, we adopt a greedy approach. We first find the top K

non-overlapping detections for each appearance detector independently. Then we

evaluate the K3 possible triplets and select the one with the maximum score defined

by Eq. (3.7).

The second technical detail is how to obtain the linear weights wi from a patch
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Figure 3.3: Summary of our discriminative triplet mining framework.
Candidate triplets are initialized from sets of neighboring images and
selected by how discriminative they are across the training set. The mid-
level representation consists of the maximum responses of the selected
triplets with geometric constraints, which is fed into a linear SVM for
classification.

template Ti. For efficiency, we use the LDA model introduced by [68]

wi = Σ−1 (Ti − µ) , (3.10)

where µ is the mean of features from all patches in the dataset, and Σ is the cor-

responding covariance matrix. The LDA model is efficient since it constructs the

model for negative patches (µ and Σ) only once.

Our triplet detector is able to handle moderate pose variations. However, if

we flip an image, both the appearance (e.g.the dominant direction of an edge) and

the order of the patches will change. We address this issue by applying the triplet

detector to the image and its mirror, generating two detection scores, and choose

the larger score as the response. This simple technique proves effective in practice.

3.3 Discriminative Triplets for Fine-Grained Classification

In this section, we describe how to automatically mine discriminative triplets

with the geometric constraints and generate mid-level representations for classifi-

cation with the mined triplets. We present the overview of our framework in Fig-
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ure 3.3. In the triplet initialization stage, we use a nearest-neighbor approach to

propose potential triplets, taking advantage of the fact that instances of fine-grained

objects share similar overall appearance. Then we verify the discriminativeness of

the candidate triplets using the whole training set or a large portion of it, and se-

lect discriminative ones according to an entropy-based measure. For classification,

we concatenate the maximum responses of the selected discriminative triplets to

construct mid-level image representations. The key to our approach is proposing

candidate triplets locally and selecting discriminative ones globally, avoiding the

insufficient data problems of other nearest-neighbor based fine-grained approaches.

3.3.1 Triplet Initialization

To reduce the computational burden of triplet mining, we initialize candidate

triplets using potentially discriminative patches in a nearest-neighbor fashion. The

overview of the procedure is displayed in Figure 3.4.

Construct Neighborhood. For a seed training image I0 with class label c0,

we extract features [69] of the whole image X0 and use it to retrieve the near-

est neighbors from the training set. Since fine-grained objects have similar overall

appearance, the resulting set of images consists of training images from different

classes with almost the same pose (Figure 3.5). This first step results in a set of

roughly aligned images, so that potentially discriminative regions can be found by

comparing corresponding regions across the images. We refer to the set consisting

of a seed training image and its nearest neighbors as a neighborhood.
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(a) Construct
Nearest-Neighborhood

(b) Discriminative 
Score Map

(c) Propose Patch 
Locations

Query Image, Class c0 Class c0

Other Classes
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(d) Select Positive 
Samples

(e) Generate Triplets

Figure 3.4: Visualization of the triplet initialization stage. (a) A seed
image from class c0 is used to construct its nearest-neighbor set includ-
ing itself. (b) Discriminative score map is generated from the stack of
neighboring images. (c) Patch locations with top discriminative scores
are selected by non-maximum suppression. (d) Images from positive
class (class c0) are selected to generate triplets. (e) Triplets are gener-
ated from positive samples at locations proposed in (c).

Figure 3.5: Some examples of a set of neighboring images. The query
image is highlighted with a red box. Since fine-grained objects share
similar overall appearance, the neighborhood consists of samples from
different classes with the same pose.
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Find Candidate Regions. We regard each neighborhood as a stack of aligned

images with their class labels and locate potentially discriminative regions. Consider

the set of patches at the same location of each image. For each location (x, y), let

Fi(x, y) be the features extracted from the patch in the ith image and let ci be its

label. Denote the set of observed class labels as C. The discriminative score at

(x, y) is simply defined as the ratio of between-class variation and in-class variation,

i.e.

d(x, y) =

∑
c∈C

∥∥Fc(x, y)− F (x, y)
∥∥2∑

c∈C
∑

ci=c

∥∥Fi(x, y)− Fc(x, y)
∥∥2 , (3.11)

where F (x, y) is the averaged feature of all patches at location (x, y), and Fc(x, y)

is the average of patches from class c. We compute discriminative scores d(x, y) for

patch locations in a sliding window fashion, with patch size 64×64 and stride 8, and

choose the patch locations with top scores. To ensure the diversity of the regions,

non-maximum suppression is used to allow only a small amount of overlap.

Propose Candidate Triplets. For a neighborhood generated from the seed

image with class label c0, candidate triplets are proposed as follows. We first select

all positive samples with label c0 in the neighborhood. For each positive sample, we

extract features from patches at the discriminative patch locations obtained in the

last step. Then for patch location i, the patch template Ti is obtained by averaging

the features of all the positive samples. We propose candidate triplets by selecting

all possible combinations of three patch locations. To avoid duplicate triplets, we

rank three patch locations by their discriminative scores Eq. (3.11). We construct

triplet detectors with geometric constraints from these patch triplets as discussed
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in Section 3.2.2.

In practice, in each neighborhood we find the top 6 discriminative locations

and propose
(
6
3

)
= 20 candidate triplets. By considering all the neighborhoods for

every class, we obtain the pool of candidate triplets.

3.3.2 Discriminative Triplets Mining by Entropy Scores

Candidate triplets are constructed from potentially discriminative regions mea-

sured by Eq. (3.11). However, this measure is computed only within a small neigh-

borhood and might be noisy due to lack of data. On the other hand, recent ap-

proaches to scene understanding [48–51] mine discriminative patches using a large

portion of the training data and obtain very good results. Consequently, we select

discriminative triplets by evaluating each candidate triplet on the broader dataset.

For each triplet detector obtained in Section 3.3.1, we detect triplets in each

training image and obtain the maximum detection score as discussed in Section

3.2.2, i.e., find the top K detections for each appearance detector, consider all K3

triplets, and choose the one with maximum geometrically-penalized score Eq. (3.7).

We obtain the top detections within the training set along with their corresponding

class labels. If a triplet is discriminative across the training set, the top detections

are expected to arise from only one or a few classes. Therefore, if we calculate the

entropy of the class distribution over the top detections, the entropy should be low.

Let p(c|T) denote the probability of top detections coming from class c for triplet
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Source Image Appearance Only Appearance + ShapeSource Image Appearance Only Appearance + Order

Figure 3.6: Visualization of the effects of the two geometric constraints.
Red boxes are incorrectly localized patches. The order constraint roughly
checks the geometric arrangement of three patches and can eliminate
incidental false detections which happen to have high appearance score;
the shape constraints enforce finer adjustments on patch locations than
the order constraint.

T. Then

H(c|T) =
∑
c

p(c|T) log p(c|T) (3.12)

is an entropy-based measure that has been effectively used by [51, 70] for patch

selection. We calculate this measure for all candidate triplets and choose the ones

with the lowest entropy to form the set of discriminative triplets.

3.3.3 Mid-Level Image Representations for Classification

Finally, we use the maximum responses of the mined discriminative triplet

detectors to construct a mid-level representation for an image. The dimension of

the mid-level representation equals the number of triplet detectors, with each de-

tection score occupying one dimension in the image-level descriptor. The mid-level

representation is used as the input for a linear SVM to produce the classification

result. We refer to the image-level descriptor as a Bag of Triplets (BoT).
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3.4 Experiments

3.4.1 Triplet Localization with Geometric Constraints

We first design a simple experiment to demonstrate that the geometric con-

straints described in Section 3.2 can actually improve patch localization, assuming

we already have a good patch set. To achieve this goal, we use the FG3DCar dataset

provided by [47]. This dataset consists of 300 car images from 30 classes, with each

image annotated with 64 ground-truth landmark points. Cars in this dataset have

large pose variations, which makes triplet localization difficult.

Experimental Settings. The experiment is designed as follows. For each image,

we construct a good set of 64 patches by extracting the ones located at the annotated

landmarks. We repeatedly and randomly select two images from the same class and

obtain two corresponding sets of 64 patches with their locations. Then we randomly

select three patches from one image (denoted as Image 1) to construct a triplet

detector in Eq. (3.6) and attempt to find the corresponding triplet in the pool of

64 patches of the other (denoted as Image 2). During the experiment, patches are

represented by the Fisher Vector features provided by [47].

The following four methods are evaluated on this task. The decision procedure

of the three methods with gemetric constraints is discussed in Section 3.2.2.

• Appearance Only (Baseline): Independently apply each patch detector, and

choose the detection with the highest score. The detected triplet consists of the

three top individual detections. In this method, only the appearance features
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of the three patches are used.

• Order Constraint: Use the appearance and the order constraint by setting

ηs = 0 in Eq. (3.5), such that ps = 1 (no shape penalty) always holds in

Eq. (3.7).

• Shape Constraint: Use the appearance and the shape constraint by setting

ηo = 0 in Eq. (3.3), such that po = 1 (no order penalty) always holds in

Eq. (3.7).

• Combined: Use both geometric constraints. In practice, we set ηo = 0.5 and

ηs = 1.

Due to large pose changes, several landmark locations are highly overlapped

with each other in some images. Therefore, during evaluation, each patch is regarded

as correctly localized if the detected patch is (i) the same as the ground truth corre-

sponding patch; (ii) highly overlapped with the ground truth corresponding patch,

with overlap/union ratio greater than 50%. Each triplet is regarded as successfully

localized if all of its three patches are correctly localized. We randomly select 1000

image pairs, and for each pair we randomly test 1000 triplets. The accuracy of

triplet localization is the percentage of successfully localized triplets over all the 1

million triplets evaluated.

Result and Analysis. We demonstrate triplet localization accuracy and relative

improvement over baseline in Table 3.1. Even though we have a human-annotated

pool of patches, localization is challenging with appearance only, since the pose vari-
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Method Localization
Accuracy
(%)

Improvement
Over Baseline
(%)

Appearance Only 24.9 -

Order Constraint 27.7 11.2

Shape Constraint 34.4 38.2

Combined 35.3 41.9

Table 3.1: Triplets localization test result on FG3DCar dataset. The lo-
calization accuracy and relative improvement over baseline (Appearance
Only method) are demonstrated.

ations are large and the appearance detector is learnt with only one positive sample.

As we add geometric constraints, we obtain cumulative improvement over the base-

line. Typical examples indicating the effects of the two constraints are displayed in

Figure 3.6. The order constraint, which is relatively loose, tends to roughly check

the geometric arrangement of three patches. It can eliminate the patches which hap-

pen to have a very high appearance score. On the other hand, the shape constraint

enforces fine adjustment, which is complementary to the order constraint. With the

two geometric constraints combined, the improvement is significant.

In the following, we demonstrate fine-grained classification results on three

standard fine-grained car datasets. No extra annotation beyond object bounding

boxes is used throughout the experiments. When comparing results, we refer to our

approach as Bag of Triplets (BoT).

3.4.2 14-Class BMVC Cars Dataset Results

Dataset. The fine-grained car dataset provided by [71] (denoted as BMVC-
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14) consists of 1904 images of cars from 14 classes. [71] has split the data into 50%

train, 25% val and 25% test. We follow this setting for evaluation.

Experimental Settings. The implementation details of our discriminative triplet

mining approach are briefly stated as follows. Each image is cropped to its bounding

box and resized such that the width is 500 (aspect ratio maintained). The patch size

is set to be 64× 64 and HOG features are extracted to represent the patches for fair

comparison to preivously reported results. In the triplet initialization stage, for each

seed image we construct the neighborhood of size 20 including itself. As mentioned

in Section 3.3.1, for each neighborhood we propose the top 6 discriminative patch

locations and propose
(
6
3

)
= 20 triplets for mining. In the triplet mining stage, we

obtain the top detections across the whole training set and calculate entropy mea-

sure Eq. (3.12). Then we select 300 discriminative triplets per class. Finally, the

mid-level representation has dimension 14× 300 = 4200, which is fed into the linear

SVM implemented by LIBLINEAR [72].

We test the following two cases:

• Without Geometric Constraints (Without Geo): In the discriminative mining

and mid-level representation construction stages, we adopt the “Appearance

Only” triplet detection strategy described in Section 3.4.1.

• With Geometric Constraints (With Geo): Each time we use a triplet detec-

tor, we use Eq. (3.7) and related techniques in Section 3.2.2 to incorporate

the two constraints. By comparing the two cases, we quantitatively test the

effectiveness of geometric constraints.
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Method Accuracy (%)

LLC [73] 84.5
PHOW [74] 89.0
FV [75] 93.9
structDPM [71] 93.5
BB-3D-G [36] 94.5

BoT (HOG Without
Geo)

94.1

BoT (HOG With Geo) 96.6

Table 3.2: Results on BMVC-14 dataset.

Results and Analysis. We compare our results with previous work, citing the

results from [47], which has provided a summary of previously published results on

BMVC-14. It includes several baseline methods such as LLC [73] and PHOW [74]

with codebook size 2048, Fisher Vector (FV) [75] with 256 Gaussian Mixture Model

(GMM) components, as well as structDPM [71] and BB-3D-G [36] specifically de-

signed for the task. Among these methods, BB-3D-G [36] used extra 3D models,

while others only used ground truth bounding boxes as we did. The results are

summarized in Table 3.2. Our method without geometric constraints outperforms

all three baseline methods. When geometric constraints are further added, our ap-

proach not only outperforms the best reported result using only bounding boxes

with a noticeable margin, but it also outperforms the BB-3D-G method which uses

extra 3D model fitting. It is worth mentioning that our method with triplet ge-

ometric constraints outperforms the DPM-based method [71], which incorporates

root-part pair-wise constraints.

We plot the performance as a function of the number of discriminative triplets
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Figure 3.7: Visualization of the most discriminative triplet (measured by
Eq. (3.12)) for each class in BMVC-14 proposed by our method. The
triplets accurately capture the subtle discriminative information of each
class, which is highly consistent with human perception. For instance,
for the first image in the first row, the triplet captures the curvy
nature of Volkswagen Beetle such as rounded hood; for the first image
in the second row, the triplet focuses on the rear cargo of the pick-up
truck, since Ford F-Series is the only pick-up in the dataset; for the last
image in the first row, the triplet highlights the frontal face of Jeep
Wrangler.

per class (with geometric constraints) in Figure 3.8. When we use only 10 triplets/class,

the performance of 84.9% already outperforms the baseline LLC [73], suggesting that

the mined discriminative triplets are highly informative. As we increase the num-

ber of triplets per class, performance more or less saturates after 100 triplets/class,

although the best performance is at 300 triplets/class. Therefore, when we deal

with large-scale datasets such as the Stanford Cars dataset below, we can use

a smaller number of triplets to construct lower-dimensional mid-level descriptors

without much loss in performance. As the number of triplets/class exceeds 300, the

performance decreases, suggesting that the remaining triplets, which rank low by

our criteria, do not add discriminatively useful information.

We further visualize the most discriminative triplet measured by the entropy

score Eq. (3.12) for all 14 classes in Figure 3.7. The triplets in the figure accurately

localize the subtle discriminative regions, which are highly consistent with human

perception, such as the distinctive side vent grill of Chevrolet Corvette (the sec-
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Figure 3.8: Classification accuracy with respect to the number of triplets
per class.

ond image in the second row of Figure 3.7, see Figure 3.7 for more details). This

empirically explains why our triplets are highly informative.

3.4.3 196-Class Stanford Cars Dataset Results

Dataset. The Stanford Cars Dataset [36] contains 16,185 car images from

196 classes (denoted as Cars-196). The data split provided by [36] is 8,144 training

images and 8,041 testing images, where each class has been roughly split 50-50. We

follow this setting in our experiment.

Experimental Settings. Our method focuses on generating effective mid-level

representations and is independent from the choice of low-level features. In this

experiment, in order to fairly compare to both the traditional methods without

using extra data/annotation and the more recent ones which finetune ImageNet

pre-trained Convolutional Neural Networks (CNN), we evaluate our approach using

both HOG and CNN features as the low-level representations of the patches. When

extracting CNN features, we directly use the off-the-shelf ImageNet pre-trained CNN
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model as a general feature extractor without any finetuning. For fair comparison, we

adopt the popular 16-layer VGGNet-16 [8] as the network architecture, and extract

features from pool4 layer, which is the max-pooled output of its 10th convolutional

layer.

Also, we adapt our approach slightly to handle such a large-scale dataset.

Instead of traversing the whole dataset, when retrieving nearest-neighbors for a

seed image with class label c0, we regard class c0 as the positive class, randomly

select 29 other classes as negative classes, and retrieve nearest-neighbors within the

training images from these 30 classes; when finding top detections for a triplet from

class c0, we use the training images from class c0 and 14 randomly selected negative

classes. Additionally, since we have empirically determined that the discriminative

triplets are informative in Figure 3.8, we select 150 discriminative triplets per class.

Except for the settings described above, other parameters remain the same as

those in Section 3.4.2.

Results and Analysis. Our baselines include LLC [73] as HOG-based baseline

and AlexNet [76] as CNN baselines. For CNN, we cite the result of training an

AlexNet from scratch on Cars-196 without extra data (AlexNet From Scratch) [66]

and the result of finetuning an ImageNet pre-trained AlexNet on Cars-196 (AlexNet

Finetuned) [58]. We also compare with previously published results including BB-

3D-G [36], ELLF [66], FT-HAR-CNN [58], Bilinear CNN (B-CNN) [59] and the

method with the highest reported accuracy so far [60]. It is worth mentioning that

the last three approaches [58–60] are CNN-based, where [58] is AlexNet based, [59]

is VGGNet-16 based, and [60] is 19-layer VGGNet-19 based. [58] finetunes a CNN
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(a) Most Discriminative Triplet (b) Average BoT without Geo (c) Average BoT with Geo

Class 173: Porsche 
Panamera Sedan 2012

Class 45: Bugatti Veyron 
16.4 Convertible 2009

Figure 3.9: (a) Visualization of the most discriminative triplets of two
example classes in Cars-196. (b)(c) The averaged image-level BoT de-
scriptor across all test samples in the corresponding class. Each dimen-
sion in the BoT is generated by the response of a mined triplet. The color
bars are used to describe the dimensions correponding to the responses
of triplets from different classes.

with the help of another 10,000 images of cars without fine-grained labels; the best

result of [59] is achieved by finetuning a two-stream CNN architecture; [60] integrates

segmentation, graph-based alignment, finetuned R-CNN [77] and SVM to produce

its best result.

The results are displayed in Table 3.3. Even though we adopted relatively

“economical” settings, our method behaves stably and operates at the state-of-the-

art performance. When using HOG as low-level patch representation, our approach

not only greatly outperforms the HOG-based baseline (LLC) (by more than 15%),

but it even outperforms the CNN baseline of finetuned AlexNet by a fairly noticeable

margin (more than 2%) – a significant achievement since we are only using HOG and

geometric constraints without any extra data or annotations. When using off-the-

shelf CNN features, our method with geometric constraints outperforms B-CNN [59]

which uses two streams of VGGNet-16, and obtained quite comparable results to
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the state-of-the-art [60]. Furthermore, our method does not perform finetuning

and depends on the strength of our discriminative triplet mining itself, which is

supported by the results, rather than the learning capability of CNNs.

To intuitively demonstrate the effectiveness of the geometric constraints, we

plot the image-level BoT descriptors from a few classes in the second and third

columns of Figure 3.9. For each class we plot the averaged BoT descriptor across

all test samples from that class. Figure 3.9 shows that after introducing the geo-

metric constraints, the BoT descriptor becomes more peaked at the corresponding

class, since the geometric constraints help learn more discriminative triplets which

generate more peaky responses, as well as penalizing those incorrect detections from

other classes which happen to have high appearance scores (which can be clearly

seen from the second row of Figure 3.9). This discriminative capability is achieved

during test time, showing that our approach generalizes very well.

Finally, we visualize the most discriminative triplet measured by Eq. (3.12)

in the first column of Figure 3.9. Similar to Figure 3.7, our approach captures the

subtle difference of fine-grained categories and accurately localizes the discriminative

regions, which are highly interpretable by humans. For example, it highlights the

distinctive air grill and rounded fender of Bugatti Veyron, and the classical headlight

and tail of Porsche.
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Method Accuracy (%)

LLC∗ [73] 69.5
BB-3D-G [36] 67.6
ELLF∗ [66] 73.9
AlexNet From Scratch
[66]

70.5

AlexNet Finetuned [58] 83.1
FT-HAR-CNN [58] 86.3
B-CNN [59] 91.3
Best Result in [60] 92.8

BoT(HOG Without
Geo)∗

84.6

BoT(HOG With Geo)∗ 85.7
BoT(CNN Without Geo) 91.2
BoT(CNN With Geo) 92.5

Table 3.3: Results on Cars-196 dataset. Items with “*” indicate that no
extra annotations/data are involved.

Method Accuracy (%)

Symbiotic [57] 75.9
Fine-tuned AlexNet [78] 78.9
Fisher Vector [78] 81.5
B-CNN [59] 84.1

BoT (CNN without Geo) 86.7
BoT (CNN with Geo) 88.4

Table 3.4: Results on FGVC-Aircraft dataset.
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3.4.4 100-Class FGVC-Aircraft Dataset Results

Finally, to demonstrate that our approach is effective in multiple fine-grained

domains, we briefly present our results on FGVC-Aircraft dataset [79], which con-

tains 10,000 images from 100 classes of aircrafts and is of similar scale to the Cars-196

dataset (16185 images from 196 classes). For fair comparison, we use the standard

train/test split provided by the dataset provider [79] and the parameter settings of

our approach are exactly the same as those in Section 3.4.3. We report our results

in Table 3.4. Our approach using CNN features (without fine-tuning) outperforms

state-of-the-art (VGGNet-16 based) [59] by a noticeable margin. The results suggest

that our approach performs well in various fine-grained domains.
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Chapter 4: Learning Discriminative Features via Label Consistent

Neural Network

4.1 Background and Motivation

Convolutional neural networks (CNN) [80] have exhibited impressive perfor-

mances in many computer vision tasks such as image classification [9], object detec-

tion [77] and image retrieval [81]. One key reason is the availability of a large amount

of training data. They can automatically learn hierarchical feature representations

which are more discriminative than previous hand-crafted ones [9].

Encouraged by their performance in static image analysis tasks, several CNN-

based approaches have been developed for action recognition in videos [3, 82–86].

Although promising results have been reported, the advantages of CNN approaches

over traditional ones [87] are not as overwhelming for videos as in static images.

Compared to static images, videos have larger variations in appearance as well as

high complexity introduced by temporal evolution, which makes learning features

for recognition from videos more challenging. On the other hand, unlike large-

scale and diverse static image data [88], annotated data for action recognition tasks

is usually insufficient, since annotating massive videos is prohibitively expensive.
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Therefore, with only limited annotated data, learning discriminative features via

deep neural network can lead to severe overfitting and slow convergence. To tackle

these issues, previous works have introduced effective practical techniques such as

ReLU [89] and Drop-out [90] to improve the performance of neural networks, but

have not considered directly improving the discriminative capability of neurons.

The features from a CNN are learned by back-propagating prediction error from the

output layer [91], and hidden layers receive no direct guidance on class information.

Worse, in very deep networks, the early hidden layers often suffer from vanishing

gradients, which leads to slow optimization convergence and the network converging

to a poor local minimum. Therefore, the quality of the learned features of the hidden

layers might be potentially lowered [92,93].

To tackle these problems, we propose a new supervised deep neural network,

Label Consistent Neural Network, to learn discriminative features for recognition.

Our approach provides explicit supervision, i.e. label information, to late hidden

layers, by incorporating a label consistency constraint called “discriminative rep-

resentation error” loss, which is combined with the classification loss to form the

overall objective function. The benefits of our approach are two-fold: (1) with

explicit supervision to hidden layers, the problem of vanishing gradients can be alle-

viated and faster convergence is observed; (2) more discriminative late hidden layer

features lead to increasing discriminative power of classifiers at the output layer; in-

terestingly, the learned discriminative features alone can achieve good classification

performance even with a simple k-NN classifier. In practice, our new formulation can

be easily incorporated into any neural network trained using backpropagation. Our
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approach is evaluated on publicly available action and object recognition datasets.

Although we only present experimental results for action and object recognition,

the method can be applied to other tasks such as image retrieval, compression,

restorations etc., since it generates class-specific compact representations.

The main contributions of LCNN are three-fold.

• By adding explicit supervision to late hidden layers via a “discriminative repre-

sentation error”, LCNN learns more discriminative features resulting in better

classifier training at the output layer. The representations generated by late

hidden layers are discriminative enough to achieve good performance using a

simple k-NN classifier.

• The label consistency constraint alleviates the problem of vanishing gradi-

ents and leads to faster convergence during training, especially when limited

training data is available.

• We achieve state-of-the-art performance on several action and object category

recognition tasks, and the compact class-specific representations generated by

LCNN can be directly used in other applications.

4.2 Feature Learning via Supervised Deep Learning

Let (x, y) denote a training sample x and its label y. For a CNN with n layers,

let x(i) denote the output of the ith layer and Lc its objective function. x(0) = x

is the input data and x(n) is the output of the network. Therefore, the network
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architecture can be concisely expressed as

x(i) = F (W(i)x(i−1)), i = 1, 2, ..., n (4.1)

Lc = Lc(x, y,W) = C(x(n), y), (4.2)

where W(i) represents the network parameters of the ith layer, W(i)x(i−1) is the linear

operation (e.g.convolution in convolutional layer, or linear transformation in fully-

connected layer), and W = {W(i)}i=1,2,...,n; F (· ) is a non-linear activation function

(e.g.ReLU); C(· ) is some prediction error such as softmax loss. The network is

trained with back-propagation, and the gradients are computed as

∂Lc
∂x(i)

=


∂C(x(n),y)

∂x(n) , i = n

∂Lc

∂x(i+1)

∂F (W(i+1)x(i))

∂x(i) , i 6= n

(4.3)

∂Lc
∂W(i)

=
∂Lc
∂x(i)

∂F (W(i)x(i−1))

∂W(i)
, (4.4)

where i = 1, 2, 3, ..., n.

4.3 Label Consistent Neural Network (LCNN)

4.3.1 Motivation

The sparse representation for classification assumes that a testing sample

can be well represented by training samples from the same class [94]. Similarly,

dictionary learning for recognition maintains the label information for dictionary
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items during training in order to generate discriminative or class-specific sparse

codes [95,96]. In a neural network, the representation of a certain layer is generated

by the neuron activations in that layer. If the class distribution for each neuron is

highly peaked in one class, it enforces a label consistency constraint on each neuron.

This leads to discriminative representation over learned class-specific neurons.

It has been observed that early hidden layers of a CNN tend to capture low-

level features shared across categories such as edges and corners, while late hidden

layers are more class-specific [92]. To improve the discriminativeness of features,

LCNN adds explicit supervision to late hidden layers; more specifically, we associate

each neuron to a certain class label and ideally the neuron will only activate when a

sample of the corresponding class is presented. The label consistency constraint on

neurons in LCNN will be imposed by introducing a “discriminative representation

error” loss on late hidden layers, which will form part of the objective function

during training.

4.3.2 Formulation

Specifically, the overall objective function of LCNN is a combination of the

discriminative representation error at late hidden layers and the classification error

at the output layer:

L = Lc + αLr (4.5)
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Figure 4.1: An example of the structure of LCNN. The label consistency
module is added to the first late hidden layer, which is a fully-connected
layer fcl. Its representation xl is transformed to be A(l)xl, which is the
output of the transformed representation layer fcl+0.5. Note that the
applicability of the proposed label consistency module is not limited to
fully-connected layers.

where Lc in Equation (4.2) is the classification error at the output layer, Lr is the

discriminative representation error in Equation (4.6) and will be discussed in detail

below, and α is a hyper parameter balancing the two terms.

Suppose we want to add supervision to the lth layer. Let (x, y) denote a

training sample and x(l) ∈ RNl be the corresponding representation produced by

the lth layer, which depends on the activations of Nl neurons in that layer. Then

the discriminative representation error is defined to be the difference between the

transformed representation A(l)x(l) and the ideal discriminative representation q(l):

Lr = Lr(x
(l), y,A(l)) = ‖q(l) −A(l)x(l)‖22, (4.6)

where A(l) ∈ RNl×Nl is a linear transformation matrix, and the binary vector

q(l) = [q
(l)
1 , . . . , q

(l)
j , . . . , q

(l)
Nl

]T ∈ {0, 1}Nl denotes the ideal discriminative representa-
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tion which indicates the ideal activations of neurons (j denotes the index of neuron,

i.e.the index of feature dimension). Each neuron is associated with a certain class

label and, ideally, only activates to samples from that class. Therefore, when a

sample is from Class c, q
(l)
j = 1 if and only if the jth neuron is assigned to Class c,

and neurons associated to other classes should not be activated so that the corre-

sponding entry in q(l) is zero. Notice that A(l) is the only parameter needed to be

learned, while q(l) is pre-defined based on label information from training data.

Suppose we have a batch of five training samples {x1,x2, . . . ,x5} and the

class labels y = [y1, y2, . . . , y5] = [1, 2, 2, 3, 3]. Further assume that the lth layer has

6 neurons {d1, d2, . . . , d6} with {d1} associated with Class 1, {d2, d3, d4} Class 2, and

{d5, d6} Class 3. Then the ideal discriminative representations for these five samples

are given by

Q(l) =



1 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 1

0 0 0 1 1



, (4.7)

where each column is an ideal discriminative representation corresponding to an

input signal or sample. The ideal representations ensured that the input signals

from the same class have similar representations while those from different classes
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have dissimilar representations.

The discriminative representation error (4.6) forces the learned representation

to approximate the ideal discriminative representation, so that the resulting neurons

have the label consistency property [95], i.e.the class distributions of each neuron 1

from layer l are extremely peaked in one class. In addition, with more discriminative

representations, the classifier, especially linear classifiers, at the output layer can

achieve better performance. This is because the discriminative property of x(l) is

very important for the performance of a linear classifier.

An example of the implementation of LCNN is shown in Figure 4.1. The

linear transformation is implemented as a fully-connected layer. We refer it as

‘Transformed Representation Layer’. We create a new ‘Ideal Representation Layer’

which transforms a class label into the corresponding binary vector q(l); then we feed

the outputs of these two layers into a Euclidean loss layer. In our experiments, we

uniformly allocate the neurons in the late hidden layer to each category2. So each

neuron in the late hidden layer can be associated with a label. As the representations

shown in Figure 4.4(i), an input signal of a category certainly can (and does) use

neurons (learned features) from other categories, indicating that sharing feature

between categories is not stopped.

1Similar to computing the class distributions for dictionary items in [97], the class distributions
of each neurons from the lth layer can be derived by measuring their activations x(l) over input
signals corresponding to different classes.

2Assuming Nl neurons in the layer and m classes, we allocate [Nl/m] neurons to each class and
then allocate remaining neurons to those classes with high intra-class difference.
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4.3.3 Network Training

LCNN is trained via stochastic gradient descent. Now we need to compute

the gradients of L in Equation (4.5) w.r.t. all the network parameters {W,A(l)}.

Compared with standard CNN, the difference lies in two gradient terms, i.e. ∂L
∂x(l) and

∂L
∂A(l) , since x(l) and A(l) are the only parameters which are related to the newly added

discriminative error Lr(x
(l), y,A(l)) and the other parameters act independently from

it.

It follows from Equation (4.5) and (4.6) that

∂L

∂x(i)
=


∂Lc

∂x(i) , i 6= l

∂Lc

∂x(l) + 2α(A(l)x(l) − q(l))TA(l), i = l

(4.8)

∂L

∂W(i)
=

∂Lc
∂W(i)

, ∀i ∈ {1, 2, ..., n} (4.9)

∂L

∂A(l)
= 2α(A(l)x(l) − q(l))x(l)T, (4.10)

where ∂Lc

∂x(i) and ∂Lc

∂W(i) are computed by Equation (4.3) and (4.4), respectively.

4.4 Experiments

We evaluate our approach on two action recognition datasets: UCF101 [98] and

THUMOS15 [7], and three object category datasets: Cifar-10 [99], ImageNet [88]

and Caltech101 [100]. Our implementation of LCNN is based on the CAFFE [101]

toolbox.
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Figure 4.2: Class 4 (BabyCrawling) and class 10 (BenchPress) samples
from the UCF101 action dataset.

During training, the objective function of LCNN in (4.5) is the combination

of softmax classification error loss Lc and the discriminative representation error

loss Lr. We refer to it as LCNN-2. Also, in order to verify the effect of our label

consistency constraint, we use Lr only to train the network, which we refer to it as

LCNN-1, in the following.

For action and object recognition, we introduce two classification approaches

here: (1) we follow the standard CNN practice of taking the class label corresponding

to the maximum prediction score; (2) We use the transformed representation A(l)x(l)

to represent an image, video frame or optical flow field and then use a simple k-NN

classifier. We refer to these two approaches as ‘argmax’ and ‘k-NN’, respectively in

the following.

4.4.1 Action Recognition

UCF101 Dataset The UCF101 dataset [98] consists of 13, 320 video clips from

101 action classes, and every class has more than 100 clips. Some video examples
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Figure 4.3: Examples of direction supervision in the late hidden layers
including (a) fc7 layer in the CNN architectures including VGG [8] and
AlexNet [9]; (b) CCCP5 layer in the Network-in-Network [10];(c) loss1/fc,
loss2/fc and Pool5/7 × 7S1 in the GoogLeNet [5]. The symbol of three
dots denotes other layers in the network.

from class 4 and class 10 are given in Figure 4.2. In terms of evaluation, we use the

standard split-1 train/test setting to evaluate our approach. Split-1 contains around

10, 000 clips for training and the rest for testing.

We choose the popular two-stream CNN as in [2–4] as our basic network ar-

chitecture for action recognition. It consists of a spatial net taking video frames as

input and a temporal net taking 10-frame stacking of optical flow fields. Late fusion

is conducted on the outputs of the two streams and generates the final prediction

score. During testing, we sample 25 frames (images or optical flow fields) from a

video as in [3] for spatial and temporal nets. The class scores for a testing video

is obtained by averaging the scores across sampled frames. In our experiments, we

fuse spatial and temporal net prediction scores using a simple weighted average rule,

where the weight is set as 2 for temporal net and 1 for spatial net.

For spatial and temporal nets, we use the VGGNet-16 architecture [8] as in [4]
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Figure 4.4: Examples of learned representations from layers fc6, fc7 and fc7.5 using
LCNN and VGGNet-16. Each curve indicates an average of representations for dif-
ferent testing videos from the same class in the UCF101 dataset. The first two rows
correspond to class 4 (Baby Crawling, 35 videos) while the third and fourth rows
correspond to class 10 (Bench Press, 48 videos). The curves in every two rows cor-
respond to the spatial net (denoted as ‘S’) and temporal net (denoted as ‘T’) in our
two-stream framework for action recognition. (a) fc6 representations using VGGNet-
16; (b) Histograms (with 100 bins) for representations from (a); (c) fc6 representations
using LCNN; (d) Histograms for representations from (c); (e) fc7 representations us-
ing VGGNet-16; (f) Histograms for representations from (e); (g) fc7 representations
using LCNN; (h) Histograms for representations from (g); (i) fc7.5 representations (i.e.
transformed fc7 representations) using LCNN. The entropy values for representations
from (a)(c)(e)(g) are computed as: (11.32, 11.42, 11.02, 10.75), (11.2, 11.14, 10.81,
10.34), (11.08, 11.35, 10.67, 10.17), (11.02, 10.72, 10.55, 9.37). LCNN can generate
lower-entropy representations for each class compared to VGGNet-16. The figure is
best viewed in color and 600% zoom in.

for two streams where the explicit supervision is added in the late hidden layer fc7,

which is the second fully-connected layer. More specifically, we feed the output of

layer fc7 to a fully-connected layer (denoted as fc7.5) to produce the transformed

representation, and compare it to the ideal discriminative representation q(fc7). The

implementation of this explicit supervision is shown in Figure 4.3(a). Since UCF101

has 101 classes and the fc7 layer of VGGNet has output dimension 4096, the output

of fc7.5 has the same size 4096, and around 40 neurons are associated to each class.

For both streams, we set α = 0.05 in (4.5) to balance the two loss terms.
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Network Architecture Spatial Temporal Both

ClarifaiNet [3] 72.7 81 87
VGGNet-19 [4] 75.7 78.3 86.7
VGGNet-16 [2] 79.8 85.7 90.9
VGGNet-16* [2] - 85.2 -

VGGNet-16** [2](baseline) 77.48 83.71 -
LCNN-1 (k-NN) 80.1 85.59 89.87

LCNN-2 (argmax) 80.7 85.57 91.12
LCNN-2 (k-NN) 81.3 85.77 89.84

Table 4.1: Classification performances with different two-stream CNN
approaches on the UCF101 dataset (split-1). The results of [2], [3] and [4]
are copied from their original paper. The VGGNet-16* result is obtained
by running the original model trained and shared by [2], while VGGNet-
16** is the reproduced result by using the same parameters and initial
model provided by [2].

Method Acc. (%) Method Acc. (%)

Karpathy [83] 65.4 Wang [87] 85.9
Donahue [102] 82.9 Lan [6] 89.1

Ng [84] 88.6 Zha [86] 89.6
LCNN-2 (argmax) 91.12

Table 4.2: Recognition performance comparisons with state-of-the-art
approaches on the UCF101 dataset.
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Figure 4.5: Training and testing error comparisons (based on spatial net)
between LCNN-2 and VGGNet-16 on the UCF101 dataset. (a) Training
error comparison; (b) Testing error comparison.

The results are summarized in Table 4.1. Under the same settings, by com-

paring the results of VGGNet-16** [2] and our LCNN-2, we can see that adding

explicit supervision to late hidden layers not only improves the classification results

at the output layer (LCNN-2 (argmax)), but also generates discriminative repre-

sentations which achieve better results even with a simple k-NN classifier (LCNN-2

(k-NN)). Moreover, it can be seen from the results of LCNN-1 that even without

the help of the classifier, our label consistency constraint alone is very effective for

learning discriminative features and achieving good classification performance. We

also compare our LCNN with other state-of-the-art approaches in Table 4.2.

In addition, we visualize the representations of test videos generated by late

hidden layers fc7.5, fc7 and fc6 in Figure 4.4. It can be seen that the entries of layer

fc7.5 representations are very peaked at the corresponding class and approaching

zero elsewhere, which forms a very good approximation to the ideal discrimina-

tive representation. Further notice that such discriminative capability is achieved
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Figure 4.6: Effects of parameter selection of k-NN neighborhood size k
on the classification accuracy performances on the UCF101 dataset.

during testing, which indicates that LCNN generalizes well without severe overfit-

ting. For fc7 and fc6 representations, their entropy has decreased, which means that

the discriminativeness of previous layers benefits from the backpropagation of the

discriminative representation error introduced by LCNN.

We investigate the convergence and testing error of LCNN during network

training. We plot the testing error and training error w.r.t. number of epochs in

Figure 4.5. It can be seen that LCNN has smaller training error, which can converge

more quickly and alleviate gradient vanishing due to the explicit supervision to late

hidden layers. In addition, LCNN has smaller testing error compared with VGG,

which means that LCNN has better generalization capability.

In Figure 4.6, we plot the performance curves for a range of k (recall k is

the number of nearest neighbors for a k-NN classifier) using LCNN-2. We observe

that our approach is insensitive to the selection of k, likely due to the increase of

inter-class distances in generated class-specific representations.
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THUMOS15 Dataset Next we evaluate our approach on the more challenging

THUMOS15 challege action dataset. It includes all 13,320 video clips from UCF101

dataset for training, and 2, 104 temporarily untrimmed videos from the 101 classes

for validation. We employ the standard Mean Average Precision (mAP) for THU-

MOS15 recognition task to evaluate our recognition performance.

We use the VGGNet-16 discussed in Section 4.4.1 as the underlying architec-

ture and train it using all UCF101 data. We used the evaluation tool provided by

the dataset provider to evaluate classification performance, which requires the prob-

abilities for each category for a testing video. For our two classification schemes,

i.e.argmax and k-NN, we use different approaches to generate the probability pre-

diction for a testing video. For argmax, we can directly use the output layer. For

the k-NN scheme, given the representation from fc7.5 layer, we compute a sample’s

distances to classes only presented in its k nearest neighbors, and convert them

to similarity weights using a Gaussian kernel and set other classes to be very low

similarity; finally we calculate the probability by doing L1 normalization on the

similarity vector.

The results are summarized in Table 4.3. Our results in the spatial stream

outperform the results in [2], [3] and [5], while our results in the temporal stream

are comparable to [3]. Based on this experiment, we can see that LCNN is highly

effective and generalizes well to more complex testing data.

4.4.2 Object Recognition
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Network Architecture Spatial Temporal Both

VGGNet-16 [2] 54.5 42.6 -
ClarifaiNet [3] 42.3 47 -
GoogLeNet [5] 53.7 39.9 -

VGGNet-16* (baseline) 55.8 41.8 -
LCNN-1 (k-NN) 56.9 45.1 59.8

LCNN-2 (argmax) 57.3 44.9 61.7
LCNN-2 (k-NN) 58.6 45.9 62.6

Table 4.3: Mean Average Precision performance on the THUMOS15
validation set. The results of [2], [3] and [5] are copied from [2]. VGGNet-
16* is the result of using the softmax loss only to train the network. Our
result 62.6% mAP is also better than 54.7% using method in [6], which
is reported in [7].

CIFAR-10 Dataset The CIFAR-10 dataset contains 60, 000 color images from 10

classes, which are split into 50, 000 training images and 10,000 testing images. We

compare LCNN-2 with several recently proposed techniques, especially the Deeply

Supervised Net (DSN) [103], which adds explicit supervision to all hidden layers.

For our underlying architecture, we also choose Network in Network (NIN) [10] as

in [103]. We follow the same data augmentation techniques in [10] by zero padding

on each side, then do corner cropping and random flipping during training.

For our LCNN, we add the explicit supervision to the 5th cascaded cross chan-

nel parametric pooling layer (cccp5) [10], which is a late 1 × 1 convolutional layer.

We first flatten the output of this convolutional layer into a one dimensional vec-

tor, and then feed it into a fully-connected layer (denoted as fc5.5) to obtain the

transformed representation. This implementation is shown in Figure 4.3(b). We set

the hyper-parameter α = 0.0375 during training. For classification, we adopt the

argmax classification scheme.
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Method (Without Data Augment.) Test Error (%)

Stochastic Pooling [104] 15.13
Maxout Networks [105] 11.68
DSN [103] 9.78
NIN [10] (baseline) 10.41
LCNN-2 (argmax) 9.75

Method (With Data Augment.) Test Error (%)

Maxout Networks [105] 9.38
DropConnect [106] 9.32
DSN [103] 8.22
NIN [10] (baseline) 8.81
LCNN-2 (argmax) 8.14

Table 4.4: Test error rates from different approaches on the CIFAR-10
dataset.

The results are summarized in Table 4.4. Regardless of the data augmentation,

LCNN-2 consistently outperforms all previous methods, including NIN [10] and

DSN [103]. The results are impressive, since DSN adds an SVM loss to every hidden

layer during training, while LCNN-2 only adds a discriminative representation error

loss to one late hidden layer. It suggests that adding direct supervision to the more

category-specific late hidden layers might be more effective than to the early hidden

layers which tend to be shared across categories.

ImageNet Dataset In this section, we demonstrate that LCNN can be combined

with state-of-the-art CNN architecture GoogLeNet [5], which is a most recent very

deep CNN with 22 layers and achieved the best performance on ILSVRC 2014.

The ILSVRC classification challenge contains about 1.2 million training images and

50, 000 images for validation from 1,000 categories.

To tackle such a very deep network architecture, we add explicit supervision
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Network Architecture Top-1 (%) Top-5 (%)

GoogLeNet [5] - 89.93
GoogLeNet* [5] (baseline) 62.64 84.96

AlexNet [107] 58.9 -
Clarifai [107] 62.4 -

LCNN-2 (argmax) 65.38 87.09

Table 4.5: Recognition Performances using different approaches on the
ImageNet 2012 Validation set. The result of GoogLeNet [5] is copied
from original paper while GoogLeNet* [5] is the reproduced result by
using the same parameters provided in [5]. The result of LCNN-2 is
obtained by training the network from scratch under the same training
condition as GoogLeNet* [5].

to multiple late hidden layers instead of a single one. Specifically, as shown in

Figure 4.3(c), the discriminative representation error losses are added to three layers:

loss1/fc, loss2/fc and Pool5/7×7S1 with the same weights used for the three softmax

loss layers in [5]. We evaluate our approach in terms of top-1 and top-5 accuracy

rate. We train the LCNN-2 and GoogLeNet on the ImageNet dataset from scratch

under the same training condition, and we adopt the argmax classification scheme.

The results are displayed in Table 4.5, where LCNN-2 achieved better results

than GoogLeNet in both evaluation metrics under the same training condition.

Please note that we did not get the same result reported GoogLeNet [5] using their

parameters in the paper. Our goal here is to show that as the network becomes

deeper, learning good discriminative features for hidden layers might become more

difficult solely depending on the prediction error loss. Therefore, adding explicit

supervision to late hidden layers under this scenario becomes particularly useful.

76



Caltech101 Dataset Caltech101 contains 9, 146 images from 101 object categories

and a background category. In this experiment, we test the performance of LCNN

with a limited amount of training data, and compare it with several state-of-the-art

approaches, including those which are not deep learning based.

For fair comparison with previous work, we follow the standard classification

settings. During training time, 30 images are randomly chosen from each category

to form the training set, and at most 50 images per category are tested. We use the

ImageNet trained model from AlexNet in [9] and VGGNet-16 in [8], and fine-tune

them under our LCNN architecture. The hidden layer supervision is added to the

second fully-connected layer (fc7). We set the hyperparameter α = 0.0375.

The performance of directly fine-tuning AlexNet and VGGNet-16, as well as

finetuning LCNN with different training/classification schemes are displayed in Ta-

ble 4.6. With only a limited amount of data available, our approach makes better

use of the training data and achieves higher accuracy. LCNN outperforms both

the deep learning approaches and other non-deep learning methods, representing

state-of-the-art on this task.
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Method Accurary(%)

LC-KSVD [95] 73.6

Zeiler [92] 86.5
Dosovitskiy [108] 85.5
Zhou [109] 87.2
He [110] 91.44

AlexNet [9] (baseline) 87.1
LCNN-1 (k-NN) 88.51
LCNN-2 (argmax) 90.11
LCNN-2 (k-NN) 89.45

VGGNet-16 [8] (baseline) 92.5
LCNN-2* (argmax) 93.7
LCNN-2* (k-NN) 93.6

Table 4.6: Comparisons of LCNN with other approaches on the Cal-
tech101 dataset. The results of LCNN-2* are obtained by using VGGNet-
16 as the underlying architecture while the results of LCNN-1 and LCNN-
2 are based on AlexNet.
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Chapter 5: Learning a Discriminative Filter Bank

within a CNN for Fine-grained Recognition

5.1 Background and Motivation

Fine-grained object recognition involves distinguishing sub-categories of the

same super-category (e.g., birds [34], cars [36] and aircrafts [79]), and solutions of-

ten utilize information from localized regions to capture subtle differences. Early

applications of deep learning to this task built traditional multistage frameworks

upon convolutional neural network (CNN) features; more recent CNN-based ap-

proaches are usually trained end-to-end and can be roughly divided into two cate-

gories: localization-classification sub-networks and end-to-end feature encoding.

Previous multistage frameworks utilize low-level CNN features to find discrim-

inative regions or semantic parts, and construct a mid-level representation out of

them for classification [60, 111–115]. These methods achieve better performance

compared to two types of baselines: (i) they outperform their counterparts with

hand-crafted features (e.g., SIFT) by a huge margin, which means that low-level

CNN features are far more effective than previous hand-crafted ones; (ii) they sig-

nificantly outperform their baselines which finetune the same CNN used for feature
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extraction. This further suggests that CNN’s ability to learn mid-level representa-

tions is limited and still has sufficient room to improve. Based on these observations,

end-to-end frameworks aim to enhance the mid-level representation learning capa-

bility of CNN.

The first category, localization-classification sub-networks, consists of a classifi-

cation network assisted by a localization network. The mid-level learning capability

of the classification network is enhanced by the localization information (e.g.part lo-

cations or segmentation masks) provided by the localization network. Earlier works

from this category [116–120] depend on additional semantic part annotations, while

more recent ones [121–123] only require category labels. Regardless of annotations,

the common motivation behind these approaches is to first find the corresponding

parts and then compare their appearance. The first step requires the semantic parts

(e.g.head and body of birds) to be shared across object classes, encouraging the

representations of the parts to be similar; but, in order to be discriminative, the

latter encourages the part representations to be different across classes. This subtle

conflict implies a trade-off between recognition and localization ability, which might

reduce a single integrated network’s classification performance. Such a trade-off is

also reflected in practice, in that training usually involves alternating optimization

of the two networks or separately training the two followed by joint tuning. Alter-

nating or multistage strategies complicate the tuning of the integrated network.

The second category, end-to-end feature encoding [59,124–127], enhances CNN

mid-level learning by encoding higher order statistics of convolutional feature maps.

The need for end-to-end modeling of higher order statistics became evident when
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Conv Layers

1 x 1 Conv Filter Bank
Filter Size C x 1 x 1

Feature Map
Size C x H x W

Input
Image

Convolution

Response Map
Size H x W

GMP

Max Response
Size 1 x 1

Figure 5.1: The motivation of our approach is to regard a C × 1 × 1
vector in a feature map as the representation of a small patch and a 1×1
convolutional filter as a discriminative patch detector. A discriminative
patch can be discovered by convolving the feature map with the 1 × 1
filter and performing Global Max Pooling (GMP) over the response map.
The full architecture is illustrated in Figure 5.2.

the Fisher Vector encodings of SIFT features outperformed a finetuned AlexNet by

a large margin on fine-grained recognition [78]. The resulting architectures have

become standard benchmarks in the literature. While effective, end-to-end encod-

ing networks are less human-interpretable and less consistent in their performance

across non-rigid and rigid visual domains, compared to localization-classification

sub-networks.

This paper addresses the issues facing both categories of end-to-end networks.

Our main contribution is to explicitly learn discriminative mid-level patches within

a CNN framework in an end-to-end fashion without extra part or bounding box

annotations. This is achieved by regarding 1× 1 filters as small “patch detectors”,

designing an asymmetric multi-stream structure to utilize both patch-level infor-

mation and global appearance, and introducing filter supervision with non-random

layer initialization to activate the filters on discriminative patches. Conceptually, our

discriminative patches differ from the parts in localization-recognition sub-networks,

such that they are not necessarily shared across classes as long as they have discrim-

inative appearance. Therefore, our network fully focuses on classification and avoids
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the trade-off between recognition and localization. Technically, a convolutional filter

trained as a discriminative patch detector will only yield a high response at a certain

region for one class.

The resulting framework enhances the mid-level learning capability of the clas-

sical CNN by introducing a bank of discriminative filters. In practice, our framework

preserves the advantages of both categories of previous approaches:

• Simple and effective. The network is easy to build and once initialized only

involves single-stage training. It outperforms state-of-the-art.

• High human interpretability. This is shown through various ablation studies

and visualizations of learned discriminative patches.

• Consistent performance across different fine-grained visual domains and vari-

ous network architectures.

5.2 Related Work

Fine-grained recognition Research in fine-grained recognition has shifted from

multistage frameworks based on hand-crafted features [41, 46, 54, 57, 78] to multi-

stage framework with CNN features [60, 111, 112, 114, 115], and then to end-to-end

approaches. Localization-classification sub-networks [116–119, 121, 122, 128] have

a localization network which is usually a variant of R-CNN [77, 129], FCN (Fully

Convolutional Network) [130] or STN (Spatial Transformer Network) [121] and a

recognition network that performs recognition based on localization. More recent

advances explicitly regress the location/scale of the parts using a recurrent local-
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ization network such as LSTM [128] or a specifically designed recurrent architec-

ture [122]. End-to-end encoding approaches [59,124–127] encode higher order infor-

mation. The classical benchmark, Bilinear-CNN [59] uses a symmetric two-stream

network architecture and a bilinear module that computes the outer product over

the outputs of the two streams to capture the second-order information. [124] fur-

ther observed that similar performance can be achieved by taking the outer product

over a single-stream output and itself. More recent advances reduce high feature

dimensionality [124, 125] or extract higher order information with kernelized mod-

ules [126, 127]. Others have explored directions such as utilizing hierarchical label

structures [131], combining visual and textual information [132–134], 3D-assisted

recognition [36,47,135], introducing humans in the loop [37,39,136], and collecting

larger amount of data [58,137–139].

Intermediate representations in CNN Layer visualization [92] has shown that

the intermediate layers of a CNN learn human-interpretable patterns from edges and

corners to parts and objects. Regarding the discriminativeness of such patterns,

there are two hypotheses. The first is that some neurons in these layers behave as

“grandmother cells” which only fire at certain categories, and the second is that

the neurons forms a distributed code where the firing pattern of a single neuron is

not distinctive and the discriminativeness is distributed among all the neurons. As

empirically observed by [140], a classical CNN learns a combination of “grandmother

cells” and a distributed code. This observation is further supported by [11], which

found that by taking proper weighted average over all the feature maps produced by

a convolutional layer, one can effectively visualize all the regions in the input image
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used for classification. Note that both [140] and [11] are based on the original CNN

structure and the quality of representation learning remains the same or slightly

worse for the sake of better localization. On the other hand, [103,141,142] learn more

discriminative representations by putting supervision on intermediate layers, usually

by transforming the fully-connected layer output through another fully-connected

layer followed by a loss layer. These transformations introduce a separation between

the supervisory signal and internal filters that makes their methods difficult to

visualize. A more recent related work is the popular SSD [143] detection framework;

it associates a convolutional filter with either a particular category of certain aspect

ratio or certain location coordinates. Compared to SSD, our architecture operates

at a finer-level (small patches instead of objects) and is optimized for recognition.

5.3 Learning Discriminative Patch Detectors as a Bank of Convolu-

tional Filters

We regard a 1 × 1 convolutional filter as a small patch detector. Specifically,

referring to Figure 5.1, if we pass an input image through a series of convolutional

and pooling layers to obtain a feature map of size C×H×W , each C×1×1 vector

across channels at fixed spatial location represents a small patch at a corresponding

location in the original image. Suppose we have learned a 1×1 filter which has high

response to a certain discriminative region; by convolving the feature map with this

filter we obtain a heatmap. Therefore, a discriminative patch can be found simply by

picking the location with the maximum value in the entire heatmap. This operation
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of spatially pooling the entire feature map into a single value is defined as Global

Max Pooling (GMP) [11].

Two requirements are needed to make the feature map suitable for this idea.

First, since the discriminative regions in fine-grained categories are usually highly

localized, we need a relatively small receptive field, i.e., each C × 1 × 1 vector

represents a relatively small patch in the original image. Second, since fine-grained

recognition involves accurate patch localization, the stride in the original image

between adjacent patches should also be small. In early network architectures, the

size and stride of the convolutional filters and pooling kernels were large. As a result,

the receptive field of a single neuron in later convolutional layers was large, as was the

stride between adjacent fields. Fortunately, the evolution of network architectures

[5, 8, 144] has led to smaller filter sizes and pooling kernels. For example, in a 16-

layer VGG network (VGG-16), the output of the 10th convolutional layer conv4 3

represents patches as small as 92×92 with stride 8, which is small and dense enough

for our task given common CNN input size.

In the rest of Section 5.3, we demonstrate how a set of discriminative patch de-

tectors can be learned as a 1×1 convolutional layer in a network specifically designed

for this task. An overview of our framework is displayed in Figure 5.2. There are

three key components in our design: an asymmetric two-stream structure to learn

discriminative patches as well as global features (Section 5.3.1), convolutional filter

supervision to ensure the discriminativeness of the patch detectors (Section 5.3.2)

and non-random layer initialization to accelerate the network convergence (Section

5.3.3). We then extend our framework to handle patches of different scales (Section
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Conv6
(1 x 1 Conv)

Pool6
(GMP)

FC Layers

Loss Layer

Conv5_x

FC Layer(s)

Loss Layer

Cross-Channel
Pooling

Loss Layer

Asymmetric Two-Stream 
(Section 3.1)

Conv Filter Supervision 
(Section 3.2)

Non-Random Init
(Section 3.3)

Left:     G-Stream
Middle: P-Stream
Right:   Side Branch

Total Loss

DFL Module
(Section 3.4)

Figure 5.2: Overview of our framework, which consists of a) an asym-
metric two-stream architecture to learn both the discriminative patches
and global features, b) supervision imposed to learn discriminative patch
detectors and c) non-random layer initialization. For simplicity, except
GMP, all pooling and ReLU layers between convolutional layers are not
displayed.

5.3.4). We use VGG-16 for illustration, but our ideas are not limited to any specific

network architecture as our experiments show.

5.3.1 Asymmetric Two-stream Architecture

The core component of the network responsible for discriminative patch learn-

ing is a 1×1 convolutional layer followed by a GMP layer, as displayed in Figure 5.1.

This component followed by a classifier (e.g., fully-connected layers and a softmax

layer) forms the discriminative patch stream (P-Stream) of our network, where the

prediction is made by inspecting the responses of the discriminative patch detectors.

The P-Stream uses the output of conv4 3 and the minimum receptive field in this
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Conv6
(1 x 1 Conv)

Pool6
(GMP)

Softmax
with

M-Way Loss

#Class = M
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Output Size:
kM x H x W

Output Size:
kM x 1 x 1

Cross-Channel Pooling
kM x 1 x 1 -> M x 1 x 1

AVE Pool

AVE Pool

AVE Pool

Figure 5.3: The illustration of our convolutional filter supervision. The
filters in conv6 are grouped into M groups, where M is the number of
classes. The maximum responses in group i are averaged into a single
score indicating the effect of the discriminative patches in Class i. The
pooled vector is fed into a softmax loss layer to encourage discriminative
patch learning.

feature map corresponds to a patch of size 92× 92 with stride 8.

The recognition of some fine-grained categories might also depend on global

shape and appearance, so another stream preserves the further convolutional layers

and fully connected layers, where the neurons in the first fully connected layer

encode global information by linearly combining the whole convolutional feature

maps. Since this stream focuses on global features, we refer to it as the G-Stream.

We merge the two streams in the end.

5.3.2 Convolutional Filter Supervision

Using the network architecture described above, the 1× 1 convolutional layer

in the P-Stream is not guaranteed to fire at discriminative patches as desired. For

the framework to learn class-specific discriminative patch detectors, we impose su-

pervision directly at the 1× 1 filters by introducing a Cross-Channel Pooling layer
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followed by a softmax loss layer, shown in Figure 5.3 as part of the whole framework

(the side branch) in Figure 5.2.

Filter supervision works as follows. Suppose we have M classes and each class

has k discriminative patch detectors; then the number of 1 × 1 filters required is

kM . After obtaining the max response of each filter through GMP, we get a kM -

dimensional vector. Cross-Channel Pooling averages the values across every group

of k dimensions as the response of a certain class, resulting in an M -dimensional

vector. By feeding the pooled vector into an M -way softmax loss, we encourage the

filters from any class to find discriminative patches from training samples of that

class, such that their averaged filter response is large. We use average instead of max

pooling to encourage all the filters from a given class to have balanced responses.

Average pooling tends to affect all pooled filters during back propogation, while max

pooling only affects the filter with the maximum response. Similar considerations

are discussed in [11].

Since there is no learnable parameter between the softmax loss and the 1× 1

convolutional layer, we directly adjust the filter weights via the loss function. In

contrast, previous approaches which introduce intermediate supervision [103, 141,

142] have learnable weights (usually a fully-connected layer) between the side loss

and the main network, which learn the weights of a classifier unused at test time. The

main network is only affected by back-propogating the gradients of these weights.

We believe this is a key difference of our approach from previous ones.
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5.3.3 Layer Initialization

In practice, if the 1× 1 convolutional layer is initialized randomly, with filter

supervision it may converge to bad local minima. For example, the output vector

of the Cross-Channel Pooling can approach all-zero or some constant to reduce the

side loss during training, a degenerate solution. To overcome the issue, we introduce

a method for non-random initialization.

The non-random initialization is motivated by our interpretation of a 1 × 1

filter as a patch detector. The patch detector of Class i is initialized by patch

representations from the samples in that class, using weak supervion without part

annotations. Concretely, a patch is represented by a C×1×1 vector at corresponding

spatial location of the feature map. We extract the conv4 3 features from the

ImageNet pretrained model and compute the energy at each spatial location (l2 norm

of each C-dimensional vector in a feature map). As shown in the first row of Figure

5.10, though not perfect, the heatmap of energy distribution acts as a reasonable

indicator of useful patches. Then the vectors with high l2 norms are selected via

non-maximum suppression with small overlap threshold; k-means is performed over

the selected C-dimensional vectors within Class i and the cluster centers are used

as the initializations for filters from Class i. To increase their discriminativeness, we

further whiten the initializations using [68] and do l2 normalization. In practice this

simple method provides reasonable initializations which are further refined during

end-to-end training. Also, in Section 5.4 we show that the energy distribution

becomes much more discriminative after training.
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As long as the layer is properly initialized, the whole network can be trained in

an end-to-end fashion just once, which is more efficient compared with the multistage

training strategy of previous works [117–119].

5.3.4 Extension: Multiple Scales

Putting Section 5.3.1 to 5.3.3 together, the resulting framework can utilize

discriminative patches from a single scale. A natural and necessary extension is

to utilize patches from multiple scales, since in visual domains such as birds and

aircrafts, objects might have larger scale variations.

As discussed in Section 5.3.1, discriminative patch size depends on the recep-

tive field of the input feature map. Therefore, multi-scale extension of our approach

is equivalent to utilizing multiple feature maps. We regard the P-Stream and side

branch (with non-random initialization) together as a “Discriminative Filter Learn-

ing” (DFL) module that is added after conv4 3 in Figure 5.2. By simply adding

the DFL modules after multiple convolutional layers we achieve multi-scale patch

learning. In practice, feature maps produced by very early convolutional layers are

not suitable for class-specific operations since they carry information that is too low-

level, therefore the DFL modules are added after several late convolutional layers in

Section 5.4.

Our multi-layer branch-out is inspired by recent approaches in object detection

[143,145], where feature maps from multiple convolutional layers are directly used to

detect objects of multiple scales. Compared with these works, our approach operates
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at a finer level and is optimized for recognition instead of localization.

5.4 Experiments

In the rest of this paper, we denote our approach by DFL-CNN, which is an

abbreviation for Discriminative Filter Learning within a CNN. We use the following

datasets:

CUB-200-2011 [34] has 11,788 images from 200 classes officially split into 5,994

training and 5,794 test images.

Stanford Cars [36] has 16,185 images from 196 classes officially split into 8,144

training and 8,041 test images.

FGVC-Aircraft [79] has 10,000 images from 100 classes officially split into 6,667

training and 3,333 test images.

5.4.1 Implementation Details

We first describe the basic settings of our DFL-CNN and then we introduce

two higher-capacity settings. The input size of all our networks is 448×448, which is

standard in the literature. We do not use part or bounding box (BBox) annotations

and compare our method with other weakly-supervised approaches (without part

annotation). In addition, no model ensemble is used in our experiments.

The network structure of our basic DFL-CNN is based on 16-layer VGGNet [8]

and the DFL module is added after conv4 3, as illustrated exactly in Figure 5.2. In

conv6, we set the number of filters per class to be 10. During Cross-Channel average
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pooling, the maximum responses of each group of 10 filters are pooled into one

dimension. At initialization time, conv6 is initialized in the way discussed in Section

5.3.3; other original VGG-16 layers are initialized from an ImageNet pretrained

model directly (compared with “indirect” initialization of conv6) and other newly

introduced layers are randomly initialized. After initialization, a single stage end-to-

end training proceeds, with the G-Stream, P-Stream and side branch having their

own softmax with cross-entropy losses with weights 1.0, 1.0 and 0.1 respectively.

At test time, these softmax-with-loss layers are removed and the prediction is the

weighted combination of the outputs of the three streams.

We extend DFL-CNN in two ways. The first extension, 2-scale DFL-CNN, was

discussed in Section 5.3.4. In practice, two DFL modules are added after conv4 3

and conv5 2, while the output of the last convolutional layer (conv5 3) is used

by G-Stream to extract global information. The second extension shows that our

approach applies to other network architectures, a 50-layer ResNet [144] in this case.

Similar to VGGNet, ResNet also groups convolutional layers into five groups and

our DFL module is added to the output of the fourth group (i.e.conv4 x in [144]).

Initialization, training and testing of the two extended networks are the same as

basic DFL-CNN.

5.4.2 Results

The results on CUB-200-2011, Stanford Cars and FGVC-Aircraft are displayed

in Table 5.1, Table 5.2 and Table 5.3, respectively. In each table from top to bottom,
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the methods are separated into five groups, as discussed in Section 5.1, which are (1)

fine-tuned baselines, (2) CNN features + multi-stage frameworks, (3) localization-

classification subnets, (4) end-to-end feature encoding and (5) DFL-CNN. The basic

DFL-CNN, 2-scale extension and ResNet extension in Section 5.4.1 are denoted

by “DFL-CNN (1-scale) / VGG-16”, “DFL-CNN (2-scale) / VGG-16” and “DFL-

CNN (1-scale) / ResNet-50”, respectively. Our VGG-16 based approach not only

outperforms corresponding fine-tuned baseline by a large margin, but also achieves

or outperforms state-of-the-art under the same base model; our best results further

outperform state-of-the-art by a noticeable margin on all datasets, suggesting its

effectiveness.

Earlier multi-stage frameworks built upon CNN features achieve comparable

results, while they often require bounding box annotations and the multi-stage na-

ture limits their potential. The end-to-end feature encoding methods have very high

performance on birds, while their advantages diminish when dealing with rigid ob-

jects. The localization-classification subnets achieve high performance on various

datasets, usually with a large number of network parameters. For instance, the

STN [121] consists of an Inception localization network followed by four Inception

classification networks without weight-sharing, and RA-CNN [122] consists of three

independent VGGNets and two localization sub-networks. Our end-to-end approach

achieves state-of-the-art with no extra annotation, enjoys consistent performance on

both rigid and non-rigid objects, and has relatively compact network architecture.

Our approach can be applied to various network architectures. Most previous

approaches in fine-grained recognition have based their network on VGGNets and
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Method Base Model Accuracy (%)

FT VGGNet [122] VGG-19 77.8
FT ResNet ResNet-50 84.1

CoSeg(+BBox) [60] VGG-19 82.6
PDFS [114] VGGNet 84.5

STN [121] Inception [146] 84.1
RA-CNN [122] VGG-19 85.3
MA-CNN [123] VGG-19 86.5

B-CNN [59] VGG-16 84.1
Compact B-CNN [124] VGG-16 84.0
Low-rank B-CNN [125] VGG-16 84.2
Kernel-Activation [127] VGG-16 85.3

Kernel-Pooling [126] VGG-16 86.2
Kernel-Pooling [126] ResNet-50 84.7

DFL-CNN (1-scale) VGG-16 85.8
DFL-CNN (2-scale) VGG-16 86.7
DFL-CNN (1-scale) ResNet-50 87.4

Table 5.1: Comparison of our approach (DFL-CNN) to recent results on
CUB-200-2011, without extra annotations (if not specified). For the
finetuned (FT) baselines, we cite the best previously reported result if
it is better than our implementation. The black-bold number represents
the best previous result.

Method Base Model Accuracy (%)

FT VGGNet [122] VGG-19 84.9
FT ResNet ResNet-50 91.7

BoT(+BBox) [115] VGG-16 92.5
CoSeg(+BBox) [60] VGG-19 92.8

RA-CNN [122] VGG-19 92.5
MA-CNN [123] VGG-19 92.8

B-CNN [59] VGG-16 91.3
Low-Rank B-CNN [125] VGG-16 90.9
Kernel-Activation [127] VGG-16 91.7

Kernel-Pooling [126] VGG-16 92.4
Kernel-Pooling [126] ResNet-50 91.1

DFL-CNN (1-scale) VGG-16 93.3
DFL-CNN (2-scale) VGG-16 93.8
DFL-CNN (1-scale) ResNet-50 93.1

Table 5.2: Comparison of our approach (DFL-CNN) to recent results on
Stanford Cars without extra annotations (if not specified).

Method Base Model Accuracy (%)

FT VGGNet VGG-19 84.8
FT ResNet ResNet-50 88.5

MGD(+BBox) [113] VGG-19 86.6
BoT(+BBox) [115] VGG-16 88.4

RA-CNN [122] VGG-19 88.2
MA-CNN [123] VGG-19 89.9

B-CNN [59] VGG-16 84.1
Low-Rank B-CNN [125] VGG-16 87.3
Kernel-Activation [127] VGG-16 88.3

Kernel-Pooling [126] VGG-16 86.9
Kernel-Pooling [126] ResNet-50 85.7

DFL-CNN (1-scale) VGG-16 91.1
DFL-CNN (2-scale) VGG-16 92.0
DFL-CNN (1-scale) ResNet-50 91.7

Table 5.3: Comparison of our approach (DFL-CNN) to recent results on
FGVC-Aircraft without extra annotation (if not specified).
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Settings Accuracy (%)

G-Stream Only 80.3
P-Stream Only 82.0

G + P 84.9
G + P + Side 85.8

Table 5.4: Contribution of the streams at test time on CUB-200-2011.
Note that at training time a full DFL-CNN model is trained, but the
prediction only uses certain stream(s).

pool6 Method Accuracy (%)

GMP 85.8
GAP 80.4

Table 5.5: Effect of Global Max Pooling (GMP) vs. Global Average
Pooling (GAP) on CUB-200-2011.

previously reported ResNet-based results are less effective than VGG-based ones.

Table 5.1, 5.2 and 5.3 shows that our ResNet baseline is already very strong, however

our ResNet based DFL-CNN is able to outperform the strong baseline by a large

margin (e.g.3.3% absolute percentage on birds). This clearly indicates that CNN’s

mid-level learning capability can still be improved even though the network is very

deep.

5.4.3 Ablation Studies

We conduct ablation studies to understand the components of our approach.

These experiments use the basic DFL-CNN framework and the CUB-200-2011 dataset.

Contribution of each stream Given a trained DFL-CNN, we investigate the

contribution of each stream at test time. Table 5.4 shows that the performance

of the G-Stream or P-Stream alone is mediocre, but the combination of the two is

significantly better than either one alone, indicating that the global information and

the discriminative patch information are highly complementary. Additionally, the

side branch provides extra gain to reach the full performance in Table 5.1.
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Layer Initialization Filter Supervision Accuracy (%)

- - 82.2
X - 84.4
X X 85.8

Table 5.6: Effect of intermediate supervision of DFL-CNN at training
time, evaluated on CUB-200-2011.

Method Without BBox (%) With BBox (%)

FT VGG-16 [131] 74.5 79.8
DFL-CNN 85.8 85.7

Table 5.7: Effect of BBox evaluated on CUB-200-2011.

Effect of intermediate supervision We investigate the effect of Section 5.3.2

and 5.3.3 by training the DFL-CNN without certain component(s) and comparing

with the full model. Table 5.6 shows a significant performance improvement when

we gradually add the intermediate supervision components to improve the quality

of learned discriminative filters. Note that Table 5.6 does not include “Filter Su-

pervision without Layer Initialization” settings since it leads to failure to converge

of P-Stream as mentioned in Section 5.3.3.

GMP vs. GAP More insight into the training process can be obtained by simply

switching the pooling method of pool6 in Figure 5.2. As can be seen from the

Table 5.5, switching the pooling method from GMP to Global Average Pooling

(GAP) leads to a significant performance drop such that the accuracy is close to

“G-Stream Only” in Table 5.4. Therefore, although conv6 is initialized to the same

Filter #3 Class 1
AM General Hummer SUV 

Filter #267 (Class 27)
BMW 1 Series Convertible

Filter #1606 (Class 161)
Mercedes-Benz 300-Class 

Filter #1847 (Class 185)
Tesla Model S Sedan

Filter #1938 (Class 194)
Volvo 240 Sedan

Filter #449 (Class 45)
Bugatti Veyron Convertible

Figure 5.4: The visualization of top patches in Stanford Cars. We remap
the spatial location of the highest activation in a feature map back to the
patch in the original image. The results are highly consistent with human
perception, and cover diverse regions such as head light (2nd column),
air intake (3th column), frontal face (4th column) and the black side
stripe (last column).
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Figure 5.5: Sample visualization of all ten filter activations learned for
one class (Class 102) by upsampling the conv6 feature maps to image res-
olution, similar to [11]. The activations are disriminatively concentrated
and cover diverse regions. Better viewed at 600%.
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Figure 5.6: The pool6 features averaged over all test samples from Class
10, 101 and 151 in Stanford Cars. The dash lines indicate the range of
values given by the discriminative patch detectors belonging to the class.
The representations peak at the corresponding class.

state, during training GMP makes the filters more discriminative by encouraging

the 1× 1 filters to have very high response at a certain location of the feature map

and the gradients will only be back-propagated to that location, while GAP makes

the P-Stream almost useless by encouraging the filters to have mediocre responses

over the whole feature maps and the gradients affect every spatial location.

Unnecessary BBox. Since our approach, DFL-CNN, is able to utilize discrimi-

native patches without localization, it is expected to be less sensitive to BBox than

the fine-tuned baseline, as supported by the results in Table 5.7.

5.4.4 Visualization and Analysis

Insights into the behavior of our approach can be obtained by visualizing the

effects of conv6, the 1× 1 convolutional layer. To understand its behavior, we

• visualize patch activations. Since we regard each filter as a discriminative

patch detector, we identify the learned patches by remapping spatial locations
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Figure 5.7: Visualization of a failure case, where the filter activates on
commonly appeared licence plates.

Figure 5.8: The visualization of patches in CUB-200-2011. We accu-
rately localize discriminative patches without part annotations, such as
the bright texture (first image), the color spot (second image), the
webbing and beak (third and forth image).

of top filter activations back to images. Figure 5.4 shows that we do find

high-quality discriminative regions.

• visualize a forward pass. Since the max responses of these filters are directly

used for classification, by visualizing the output of conv6’s next layer, pool6,

we find that it produces discriminative representations which have high re-

sponses for certain classes.

• visualize back propagation. During training, conv6 can affect its previous

layer, conv4 3 (VGG-16), through back propagation. By comparing the conv4 3

features before and after training, we find that the spatial energy distributions

of previous feature maps are changed in a discriminative fashion.

5.4.4.1 Stanford Cars

The visualization of top patches found by some classes’ 1×1 filters is displayed

in Figure 5.4; the visualization of all ten filters learned for a sample class is displayed
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Figure 5.9: The averaged pool6 features over all test samples from Class
101 in CUB-200-2011, peaky at corresponding dimensions.

in Figure 5.5. Unlike previous filter visualizations, which pick human interpretable

results randomly among the filter activations, we have imposed supervision on conv6

filters and can identify their corresponding classes. Figure 5.4 shows that the top

patches are very consistent with human perception. For instance, the 1847th filter

belonging to Class 185 (Tesla Model S) captures the distinctive tail of this type.

Figure 5.5 shows that the filter activation are highly concentrated at discriminative

regions and the ten filters cover diverse regions. The network can localize these

subtle discriminative regions because: a) 1 × 1 filters correspond to small patch

detectors in original image, b) the filter supervision, and c) the use of cluster centers

as initialization promotes diversity.

The visualization of pool6 features is shown in Figure 5.6. We plot the aver-

aged representations over all test samples from a certain class. Since we have learned

a set of discriminative filters, the representations should have high responses at one

class or only a few classes. Figure 5.6 shows that our approach works as expected. As

noticeable, the fine-grained similarity at patch-level (e.g.Audi A4 and Audi A6) and

few common patterns ( example shown in Figure 5.7) might explain the alternative

peaks in Figure 5.6.
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Before
Training

After
Training

Figure 5.10: Visualization of the energy distribution of conv4 3 feature
map before and after training for Stanford Cars. We remap each spatial
location in the feature map back to the patch in the original image.
After training in our approach, the energy distribution becomes more
discriminative. For example, in the 1st column, the high energy region
shifts from the wheels to discriminative regions like the frontal face and
the top of the vehicle; in the 2nd column, after training the energy
over the brick patterns is reduced; in the 3rd column, the person no
longer lies in high energy region after training; in the 7th column, before
training the energy is focused mostly at the air grill, and training adds
the discriminative fog light into the high energy region. More examples
are interpretated in Section 5.4.4.1.

Most interesting is the effect of conv6 on the previous convolutional layer

conv4 3 through back propagation. As discussed in Section 5.3.3, we use the energy

distribution of conv4 3 as a hint to provide layer initialization. After training,

we observed that the energy distribution is refined by conv6 and becomes more

discriminative, as shown by Figure 5.10. We map every spatial location in the

feature map back to the corresponding patch in the original image, and the value of

each pixel is determined by the max energy patch covering that pixel. From the first

line of Figure 5.10, the features extracted from an ImageNet pretrained model tend

to have high energy at round patterns such as wheels, some unrelated background

shape, a person in the image and some texture patterns, which are common patterns

in generic models found in [92]. After training, the energy shifts from these patterns

to discriminative regions of cars. For example, in the 6th column, the feature map has

high energy initially at both the wheel and the head light; after training, the network
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Figure 5.11: The energy distributions of conv4 3 feature maps before and
after training in CUB-200-2011. After training, in the left example, the
high energy region at the background branches is greatly shrinked and
the energy is concentrated at the discriminative color spot; in the right
example, more energy is distributed to the distinctive black-and-white
wing and tail of the species.

has determined that a discriminative patch for that class (Volkswagen Beetle) is the

head light rather than the wheels. Therefore, conv6 have beneficial effects on their

previous layer during training.

5.4.4.2 CUB-200-2011

Figure 5.8 shows examples of the discriminative patches found by our ap-

proach. They include the texture and spots with bright color as well as specific

shape of beak or webbing. Compared with visualizations of previous works not

using part annotations (e.g. [59, 60]), our approach localizes such patches more ac-

curately because our patch detectors operate over denser and smaller patches and

do not have to be shared across categories.

Similar to cars, features from the next GMP layers are peaky at certain cat-

egories (Fig. 5.9). The energy distributions of previous convolutional features are

also improved: high energy at background regions like branches is reduced and the

discriminative regions become more focused or diverse according to different cate-

gories (Fig. 5.11).
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Chapter 6: Continuous 3D Pose Estimation for Fine-grained Objects

6.1 Motivation

Estimating 3D object pose from a single 2D image is an indispensable step

in various practical applications, such as fine-grained object recognition [147, 148],

car damage detection [149], novel view synthesis [150,151], grasp planning [152] and

autonomous driving [153].

The human visual system has a remarkable ability of interpreting 3D shapes

and structures [154]. Even with a single image, human are still able to predict

the 3D pose and the 3D shape of objects [155]. With the recent development of

deep Convolutional Neural Networks (CNNs) [156], 3D object pose estimation in

Table 6.1: Comparison of our dataset with some of the other 3D datasets.

# class # image # instance annotation fine
type grained

3D Object 10 6,675 7 discretized view 7

EPFL Cars 1 2,299 7 continuous view 7

Pascal 3D+ 12 30,899 79 2d-3d alignment 7

ObjectNet3D 100 90,127 201,888 2d-3d alignment 7

StanfordCars (Ours) 196 16,185 16,185 2d-3d alignment 3

FGVC-Aircraft (Ours) 100 10,000 10,000 2d-3d alignment 3

CompCars (Ours) 113 5,696 5696 2d-3d alignment 3

Total (Ours) 409 31881 31881 2d-3d alignment 3
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static images has become a new challenging problem in computer vision [157]. Most

existing work utilize CNNs to directly map the images into the 3D pose space by

regressing the 6 degrees of freedom (DoF) of objects [157–159]. By simultaneously

estimating 3D pose and class label, with a ground truth label-shape correspondence

dataset that could generate 3D shape prior from a pure label [160], the CNNs are

able to recover most of the 3D information for rigid objects such as cars, airplanes,

etc [161]. This type of methods is very straightforward and works pretty well,

particularly when there are enough training data with 3D annotations [162].

However, due to the expensive annotation cost, most existing 3D pose estima-

tion datasets only provide ground truth pose for a few object classes and the number

of instances associated to each category is still quite small [163]. This could prevent

the CNNs from learning robust models for 3D pose estimation. To the best of our

knowledge, there are so far only two large scale 3D dataset, Pascal 3D+ [161] and

ObjectNet3D [162]. Both dataset are designed for the 3D pose estimation for general

objects, and there is still no large scale 3D pose dataset for fine-grained objects. In

this work, we introduce a new dataset that is able to benchmark both fine-grained

object recognition and fine-grained object pose estimation. Specifically, we augment

the existing Stanford Cars [147], FGVC-Aircraft [164] and CompCars [165] dataset

with the annotation of ground truth 3D pose for each instance, producing a total

number of 30000+ images and 300+ classes, with approximately 100 images per

category. Table 1 shows the general statistics of the 3D pose dataset.

Our dataset annotation process is similar to ObjectNet3D [162]. We first

download a set of computer aided design (CAD) models from ShapeNet [160]. These

103



CAD models are selected to match the different object categories in each fine-grained

dataset. Then each object instance in a category is associated with the correspond-

ing CAD model. We then ask our mechanical turkers to align the 3D geometry to

best match a 2D image using our designed interface. It is non-trivial to align the

2D image with a 3D model, since different pose parameters may create a similar

visual appearance, making the annotators easily confused. To guarantee the quality

of the 3D pose alignment, we designed a user friendly annotation tool to allow the

annotators to easily visualize the quality of the pose matching and hence able to

adjust to a better pose with ease. In the end, we obtain the aligned 3D poses for all

fine-grained objects in our selected 2D images across the three fine-grained dataset.

Figure 1 shows our annotation interface and some examples in our dataset.

The new annotation allows us to study the problem of joint continuous fine-

grained 3D pose estimation and fine-grained object recognition [159]. To address this

new problem, We introduce a new approach and a new 3D shape representation. In

terms of the approach, we augment the recently introduced Mask R-CNN [166] which

proves to be successful on object detection and semantic segmentation, and add an

extra branch to conduct 3D pose estimation. In terms of the shape representation,

we introduce location field, a new representation that models the 3D shape with

location values of all the pixels on the object surface. This new representation

is very efficient in representing the whole 3D shape, particularly it allows CNNs

efficiently learn useful filters that can capture the global and local shape of the

objects.

Our contribution is three-fold. First, we collect a new large 3D pose dataset
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for fine-grained objects, which consists of more than 30,000 images with more than

300 different categories. Second, we propose a new multi-task network structure for

simultaneous fine-grained recognition and 3D pose estimation. Third, we propose

location field, a new 3D representation that efficiently encodes the object shapes. We

conduct exhaustive experiments on our new dataset. Experimental results suggest

our method achieves new state-of-the-art performance on simultaneous fine-grained

recognition and pose estimation.

6.2 Related Work

Our work is joint fine-grained recognition and 3D pose estimation in 2D images.

We first briefly review fine-grained recognition, then focus on reviewing 3D pose

estimation.

6.2.1 Fine-Grained Recognition

Fine-grained recognition refers to the task of distinguishing sub-ordinate cat-

egories, such as bird species [167], dog breeds [168], car models [147], airplane cat-

egories [164], etc. Great success has been achieved for fine-grained recognition in

the last few years, thanks to the collection of large scale fine-grained dataset [165,

169–171]. In addition, the methodology for fine-grained recognition is also evolving

fast [172, 173]. Based on the recent success of CNNs, many variants such as part

models [174] and attention models [175, 176] are developed to capture the level of

need for fine-grained recognition. While most existing models only base on monoc-
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ular images [170, 173, 177], the 3D shape is found to be a very important additive

cue for recognizing fine-grained objects [147,178]. However, almost all existing fine-

grained dataset are lack of 3D pose labels and 3D shape information. In this work,

we fix this gap by annotating ground truth 3D poses on three different popular

fine-grained dataset including Stanford Cars [147], FGVC-Aircraft [164] and Com-

pCars [165]. This facilitates our study on (1) how much 3D shape can potentially

improve fine-grained recognition, and (2) how much joint fine-grained recognition

and pose estimation can help each other.

6.2.2 Monocular 3D Pose Estimation

Monocular 3D pose estimation is a very challenging problem in computer vi-

sion. Since a monocular image does not contain direct depth information, many

previous approaches attempt to address this problem through keypoint matching

or template matching methods. With the advance of deep learning, the 2D based

3D object pose estimation methods in the literature can be roughly clustered into

three main groups, (1) feature / keypoint based methods (2) template / appearance

based methods, and (3) deep learning based methods.

Feature / keypoint based methods: The feature-based methods first ex-

tract local discriminative features from points of interests [179], then match them to

features on the 3D models to establish the 2D-3D keypoint correspondence [180–185].

The matching result is usually represented by a (probabilistic) heatmap of 2D key-

points. After then, the 3D pose is obtained by finding the best alignment from
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the detected 2D keypoints to the 3D keypoints. In more details, Collet et al. [186]

propose an iterative framework that iteratively generates groups of image features

that are likely to belong to a single object instance and computes object hypotheses

given clusters of features Ramakrishna et al. [187] recover the 3D configuration of

a human pose from 2D locations of the human anatomical landmarks in a single

image. Ghodrati et al. [188] consider viewpoint estimation as a 1-vs-all classifica-

tion problem and show that template based methods with fisher encoding or CNN

encoding can outperforms keypoint based methods. Zhou et al. [189] represent 3D

shape as a linear combination of rotatable basis shapes to address the simultaneous

camera parameter estimation and 3D shape estimation. Feature-based methods are

able to handle occlusions between objects. However, they require sufficient textures

on the objects in order to extract discriminative features for keypoint matching. To

deal with texture-less objects, [180, 190] propose to learn feature descriptors auto-

matically.

Template / appearance based methods: Template based methods are

widely used in 3D pose estimation [191–198]. By representing a 3D object with

a set of independent 2D appearance models, with each model for one viewpoint,

the methods try to directly figure out the most probable pose by finding the best

template match in the input image. Compared to the keypoint based methods,

template based methods are more useful in detecting pose for texture-less objects.

For example, Branchman et al. [194] show a single RGB image is sufficient to achieve

visually convincing results for 3D pose estimation. Cao et al. [195] obtains real-

time 3D pose estimation for textureless objects by matching the real images with a
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3D model to render example poses of a textureless object. All these methods use

hand-engineered features such as HOG and fisher encoding which is not end-to-end

trainable.

Deep learning based methods: With the recent development of deep learn-

ing, many new approaches start to adopt CNNs for 3D pose estimation [190, 199–

206]. The overall idea of most methods are relatively simple, instead of design-

ing various complicated matching methods or feature engineering, most of them

learn CNNs that maps the 2D image directly to the 3D pose space. For example,

Doumanoglou et al. [190] use CNNs to estimate 3D pose through directly regress-

ing object poses by exploiting Siamese Networks. Doumanoglou et al. [201] further

provide an end-to-end neural architecture for simultaneous object detection and 3D

pose estimation. Yang et al. [207] propose an auto-masking neural networks that

automatically learn to select the most discriminative object parts across different

viewpoints from training images. Poirson et al. [158, 208] extends the SSD model

for object detection to pose estimation and show the SSD is also good at model-

ing pose. More recently, Xiang et al. [157] carefully design a convolutional neural

network, PoseCNN, specifically for 3D pose estimation, and achieve state-of-the-art

results on the challenging dataset with severe object occlusion. Our method also lies

in this category, where we propose to use the Mask R-CNN as the baseline neural

network structure to conduct pose estimation.
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6.2.3 Monocular 3D Pose Estimation Dataset

Following with the methods, there are several monocular 3D pose benchmark

dataset for studying pose estimation [161, 162, 209–215]. For example, 3D Object

dataset provides viewpoint annotation for 10 object classes with 10 instances for each

class . EPFL Car dataset consists of 2,299 images of 20 car instances at multiple

azimuth angles. To avoid the variance in other pose parameters, the elevation and

distance in this dataset is almost the same for all the car instances. The KITTI

dataset [216] provides 3D bounding box annotation for two categories (car and

pedestrian), where there are 80,000 instances for each category. However, there is

no detailed shape or classes for each object. The IKEA Object dataset [210] provides

dense 3D annotations of 800 images for 90 different IKEA objects. Their dataset

is limited to indoor images and the number of instances per category is small. The

NYC3DCars dataset [211] annotate 5,186 car images along with 567K 3D points but

only the dataset contains only one category. Pascal 3D+ is the first large scale 3D

pose dataset for generic objects, with 12 different object categories and 30,899 images

from the challenging VOC Pascal dataset [217]. The most recent ObjectNet3D

dataset [162] further builds a large scale database for 3d object recognition, that

consists of 100 categories and 90,127 images.

Our goal is to provide a new large scale dataset to enhance fine-grained object

recognition and 3D pose estimation on a challenging and real world benchmark.

Compared to other large generic object datasets such as Pascal 3D+ [197] and

ObjectNet3D [162], we annotate a large group of fined-grained objects. For example,
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we annotate the 3D pose for a total number of 200 different car categories and

100 different airplane categories. To the best of our knowledge, this is the first

fine-grained object recognition dataset with 3D pose annotation. Table 1 shows a

comparison between our dataset and some of the most relevant datasets mentioned

above.

6.2.4 Joint Object Recognition and 3D Pose Estimation

3D pose estimation often comes with joint object recognition since both prob-

lems are fundamental and can potentially help each other. There are several works

attempting to address joint object recognition and 3D pose estimation in monocular

images [159, 180, 183, 186, 202, 218–220]. There are extensive works addressing the

problem of joint object detection and 3D pose estimation [157,158,191–193,197,200,

207,208,213,221–225].

Savarese and Fei-Fei [218] first propose to solve the problem of joint object

recognition and 3D pose estimation, where they provide a 3D part representation to

model the object appearance around the surface. Hao et al. [221] follow this work

and propose a dense, multiview representation for the 3D objects parameterized

by a triangular mesh of viewpoints. Later, [191] and [197] extend the discrimina-

tive deformable part based models to achieve joint object detection and viewpoint

estimation. With the new success of deep learning, Elhoseiny et al. [202] adjust

a pre-trained CNN model to work on the problem of joint object recognition and

pose estimation, and [200, 222, 226] all attempt to solve the problem of joint object
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detection and pose estimation through end-to-end deep CNNs. In all these works,

however, they restrice the pose to only either the azimuth or yaw angle, not the

full 3D pose information. Mahendran et al. [159] propose to use CNNs to recover

the full 3D rotation matrix which is a much harder problem. We also attempt to

recover the full 3D pose information, which is similar to [159]. But we focus on the

problem of fine-grained object recognition jointly with 3D pose estimation, and no

previous methods have studied along this direction.

6.2.5 3D Representation

Various works [227–229] study what is an appropriate presentation for 3D

shapes. Since there is still no conclusion on what 3D representation is the best for

3D object recognition and pose estimation, we propose

6.3 Dataset

6.3.1 3D models

We build three fine-grained 3D pose dataset, two for vehicles and one for air-

planes. The dataset consist of two parts, i.e., 2D images and 3D models. The 2D

images vehicles are collected from StanfordCars [147] and CompCars [165] and the

2D images of the airplane dataset are collected from FGVC-Aircraft [164]. Tar-

get objects in all 2D images of these three dataset are non-occluded and easy to

identify. all 2D images from the dataset. In order to distinguish the difference be-

tween fine-grained categories, we adopt a distinct model for each fine-grained class.
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Thanks to the work [160], large numbers of 3D models for fine-grained vehicles and

airplanes are available with make/model names in their meta data. 3D models used

in our work are courtesy from ShapeNet [160]. We find the 3D model for an im-

age category by searching the category name in ShapeNet meta data and pick the

matched model. The matched model is very accurate since it usually is from the

same make/model. For StanfordCars and FGVC-Aircraft, we include images from

all 196 and 100 categories. For CompCars, we include 113 categories with matched

3D models in ShapeNet. Note that, our dataset is the very first one which employs

fine-grained category aware 3D model in 3D pose estimation.

6.3.2 Camera model

The world coordinate system is defined in accordance with the 3D model

coordinate system. In this case, a point P in a 3D model is projected onto a point

p on a 2D image:

p = PP (6.1)

where P is a projection matrix:

P = K [R|T ] (6.2)
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K is the intrinsic parameter:

K =


f 0 u

0 f v

0 0 1

 (6.3)

R is a 3×3 rotation matrix encoding the rotation transformation between the world

coordinate system and the camera coordinate system. This transformation is given

by three angels i.e., elevation, azimuth and in plane rotation. We assume that

the camera is always facing to the origin of the 3D model. Hence the translation

T = [0, 0, d]t is only defined up to model depth d, the distance between the origins of

two coordinate systems, and the principal point (u, v) is the projection of the origin

of world coordinate system on the image. As a result, our model has 7 parameters

in total: camera focal length: f , principal point location xc, yc, azimuth a, elevation

e, in-plane rotation θ and model depth d.

Compared with the camera models which are used in [161, 162] where 6 pa-

rameters are to be estimate, our camera model formulates both the camera focal

length and object depth at the same time for the sake of a more realistic model

which achieves a better fitting results than models having 6 parameters.

6.3.3 3D Annotation

We annotate 3D pose information for all 2D images in our three dataset

through crowd-source. To facilitate the annotation process, we developed an an-
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Figure 6.1: Overview of our annotation interface.

notation tools as illustrated in Figure 6.1. For each image under annotation, a 3D

model is chosen according to the fine-grained car type which is given beforehand.

Then, an annotator is asked to adjust the seven parameters so that the projected 3D

model is aligned with the target object in 2D image. This process can be roughly

summarized as follows: (1) shift the 3D model such that the center of the model

(the origin of the world coordinate system) is roughly aligned with the center of the

target object in the 2D image; (2) rotating the model to the same orientation as

the target object in 2D image; (3) adjusting d and f to match the size of the target

object in 2D image. Some finer adjustment might be applied after the three main

steps.

6.4 Continuous 3D Pose Estimation for Fine-Grained Objects

Given an input image of a fine-grained object, our task is to predict all the

parameters accurately in Equation 6.4, i.e., 3D rotation R, distance d and intrinsic

parameters (u, v) and f such that the projected 3D model aligns with the object in

the image as well as possible.
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The major advantage of our datasets over previous ones is that we have more

accurate 3D models corresponding to each fine-grained category. These newly intro-

duced correspondences can possibly add new supervisory signals at training time.

Moreover, we introduced a dense 3D representation called “3D location field”; com-

plementary to standard “sparse” 3D representation of pose parameters, we explore

its usage in supervising 3D pose estimation.

All our 3D pose estimation frameworks are based on recent 2-stage proposal-

based detection architectures (i.e., Faster R-CNN and Mask R-CNN). Inspired by

recent success of Mask R-CNN, we further explore the new problem of joint fine-

grained recognition and 3D pose estimation in an end-to-end fashion. As discussed

in the introduction, simultaneously providing the fine-grained label and accurate 3D

pose in a single network is potentially useful in several real-world applications.

6.4.1 Baseline Framework

Our baseline method only uses 2D appearance information to regress pose pa-

rameters, and only 2D images are needed as input at test time. The baseline is

derived from Faster R-CNN [230]. Casting our pose estimation problem into a de-

tection framework is naturally motivated by the dependency on 2D appearance and

the relation between the two tasks. Since we are not using key points as an inter-

mediate representation or as an attention mechanism, performing pose estimation

within the region of interest (RoI) gets rid of unrelated image regions and makes

the usage of 2D information much more effective. In addition, the estimation of 3D
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pose, especially the intrinsic parameters in Equation 6.3, is highly correlated with

the detection task. For instance, the principal point (u, v) (the projection of 3D

object center on 2D image) is highly related to the center of the RoI; f , the param-

eter controlling the scale of the projection, is related to the diameter of the RoI. In

this way, pose estimation benefits from additional supervisory signals provided by

detection.

The choice of the regression targets is of vital importance to achieve good

performance in practice. Therefore we carefully modify the parametrization of 3D

poses from that at annotation time.

• The rotation parameters R is parametrized by azimuth a, elevation e and in-

plane rotation θ during annotation. During training, directly regressing the

angles might not be a good idea since the angles are periodic and a small differ-

ence in input appearance can lead to a large loss (e.g., 359◦ and 1◦ in azimuth).

To avoid this problem, we parametrize 3D rotation using the quaternion rep-

resentation, which can be regressed from 2D appearance alone. Although less

human-interpretable than angles, regressing quaternion achieves better per-

formance since small difference in appearance corresponds to small difference

in quaternions.

• 3D Distance d can also be regressed from 2D appearance alone. Since a larger

d means that the object in the image will have more obvious perspective

distortion.

• (u, v) is highly related to RoI center. Therefore, we regress (∆u,∆v), the
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Figure 6.2: Pose Estimation Framework Diagram

offset of the principal point from the RoI center. The offset exists and can

be regressed from 2D appearance, since the projection of the 3D object center

might not necessarily be the 2D center depending on the poses.

• f is related to the diameter of the RoI. Therefore, we regress the ratio f̂

between the original f and the diameter defined as the square root of RoI area.

Such ratio needs regression since the relationship between f and diameter is

nonlinear and depends on the poses.

The modification of network architecture is relatively straightforward. As

shown in Figure 6.2, we add a pose estimation branch along with the existing class

prediction and bounding box regression branches. Similar to the bounding box

regression branch, the estimation of each group of pose parameters consists of a

fully-connected (FC) layer and a smooth l1 loss. The centers and sizes of RoIs are

also used to adjust the regression targets at training time and generate the final

predictions at test time, as discussed above.
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6.4.2 Improve Pose Estimation via 3D Location Field

Given an object in an image and its 3D model, a 3D location field maps every

foreground pixel to its corresponding location on the surface of the 3D model, i.e.,

f(x, y) = (X, Y, Z). The resulting field has the same size of the image and has three

channels containing the X, Y and Z coordinates respectively. Two sample images

of car and aircraft and their corresponding 3D location fields can be seen in Figure

6.3. Different from previous works which use a sparse collection of 3D coordinates,

the 3D location field is a dense representation of 3D information from which the

underlying 3D pose can be inferred.

A 3D location field can be easily generated from the 3D model and our 3D

annotation in three steps. In Step 1 the 3D location of the virtual camera center

w.r.t. the 3D model center is calculated as

C = [d cos(e) cos(a), d cos(e) sin(a), d sin(e)], (6.4)

where a, e, d denote azimuth, elevation and distance in Section 6.3, respectively.

In Step 2, given a 3D model containing a set of faces (usually triangular faces) and

known camera center C, all the visible faces can be obtained using the Z-buffer

algorithm. In Step 3, the visible faces are projected to the image plane and the

mapping between the 2D pixels and the 3D coordinates are established.

Our first extension of baseline is to improve 3D pose estimation using 3D

location field, based on Mask R-CNN. We still expect only 2D image input at test
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Figure 6.3: Sample image and its corresponding 3D location fields

time, therefore we regress 3D location field and use the regressed field to help pose

estimation. We modify the mask branch of Mask R-CNN to regress 3D location

field, and the regressed field along with previous RoI feature map are used by the

3D pose branch. The regressed location field passes convolution layer followed by

pooling layer and merges with the pooled appearance feature map. After that comes

the FC layers and smooth l1 losses to regress the pose parameters as discussed in

Section 6.4.1. The detailed network architecture is shown in Figure 6.4.

The field is very suitable for the task due to the following reasons: (i) the

convolution layer can be easily applied to extract features since the field preserves 2D

locality; (ii) the field only encodes 3D location information without any rendering

of 3D model and naturally avoids the domain gap between synthetic image and

photo-realistic images; (iii) the field is invariant to color, texture and scale of the

images.

6.4.3 Joint Pose Estimation and Fine-grained Recognition

Our second extension is to tackle the more challenging problem of joint fine-

grained recognition and 3D pose estimation in an end-to-end fashion. Given an

input 2D image at test time, a single network will produce both the fine-grained

label and 3D pose parameters.
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Figure 6.4: Left: Network architecture of using 3D location field to help
pose. Right: Network architecture for joint fine-grained recognition and
pose estimation.

We add a fine-grained recognition branch to our baseline framework in Section

6.4.1. In Mask R-CNN and our baseline, all the branches share all the convolu-

tion layer weights. In our joint prediction architecture, the fine-grained recognition

branch does not share weights of its late convolution layers with the detection branch

and 3D pose branch, as illustrated in Figure 6.4. The reason is that the detection

and pose branch encourages the representations of different fine-grained categories

to be similar while the fine-grained recognition branch needs them to be discrimi-

native. In practice, this early branch-out strategy proves important to achieve good

performance.

6.5 Baseline Experiments

6.5.1 Evaluation Metrics

There are various metrics to evaluate 3D pose estimation depending on dif-

ferent parametrization. Our focus is to evaluate the overall quality of perspective

projection rather than any particular parameter. Therefore our evaluation met-
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ric is based on Average Distance of Model Points in [231], which measures

the averaged distance between predicted projected points and their corresponding

ground truth projections. According to [231], this is the most widely-used pose error

function.

Concretely, given one test sample S = {P̂ ,P ,M}, where its predicted pose is

P̂ , its ground truth pose P and corresponding 3D model M, the Average Distance

of Model Points is defined as

eADD(S) = avg
X∈M

∥∥∥PX− P̂X
∥∥∥
2

(6.5)

The unit of the above distance is number of pixels. To make the metric scale-

invariant, we normalize it using the diameter of the bounding box. We denote

the normalized distance as ẽADD. To measure the performance over the whole test

set, we compute mean and median of ẽADD over all test samples. Also, by setting

threshold on ẽADD, we can get an accuracy number Accth. In practice, the common

threshold is 0.1, which means that the prediction with average projection error less

than 10% of the diameter is considered correct.

It is worth mentioning that the 3D models are only used when computing the

evaluation metrics. During test time, only a single 2D image is fed into the network

to predict the pose P .
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Name Stanford Cars 3D FGVC-Aircraft 3D CompCars 3D

# Train 8144 6667 3798
# Test 8041 3333 1898

Table 6.2: Train / Test Split of the Datasets.

6.5.2 Experimental Settings

Data Split: For Stanford Cars 3D and FGVC-Aircraft 3D, since we annotated

all images, we follow the standard train / test split provided by the original dataset

provider [147] [79]. For CompCars 3D, we randomly sample 2/3 of our annotated

data as training set and the rest 1/3 as test set. The number of training and test

samples of the three datasets are displayed in Table 6.2.

Implementation Details: Our implementation is based on the Detectron pack-

age [232], which includes Faster / Mask R-CNN implementations. The convolution

body (i.e., the “backbone” in [166]) used for the baseline is ResNet-50. For fair

comparison, the convolution body is initialized from ImageNet pre-trained model,

and other layers are randomly initialized (i.e., we are not using COCO pre-trained

detectors). Following the settings of Mask R-CNN, the whole network is trained end-

to-end; at test time, a cascaded strategy is adopted, where the 3D pose branch is

applied only to the highest scoring box predictions after non-maximum suppression.
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Median ẽADD Mean ẽADD Accth=0.1 (%)

Stanford Cars 3D 0.1096 0.1884 45.96
FGVC-Aircraft 3D 0.0988 0.1399 50.87

CompCars 3D 0.1275 0.1580 32.52
CompCars 3D (FT) 0.0878 0.1123 58.58

Table 6.3: Baseline results of 3D pose estimation.
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Figure 6.5: Plot of Accth w.r.t. threshold.

6.5.3 Results and Analysis

The baseline results for the three datasets are shown in Table 6.3. The changes

of Accth w.r.t the threshold for the three datasets are shown in Figure 6.5. For

Stanford Cars 3D and FGVC-Aircraft 3D, the Median Average Distance of Points

(Median ẽADD) is around 0.1, meaning that the average projection discrepancy is less

than 10% of the diameter for around half of the test samples (Accth=0.1). In terms

of Mean Average Distance of Points (Mean ẽADD), Stanford Cars 3D has noticeably

larger error than FGVC-Aircraft 3D. The main reason is that the photos of aircrafts

are usually taken from a distance, which have less perspective distortion than photos

of cars. For CompCars 3D dataset, besides ImageNet initialization we also report
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Figure 6.6: Visualizations of predicted poses for test samples. For each
dataset, we show five examples of successful predictions and two of the
failure cases, separated by the solid black line in the figure.

the result finetuned from a Stanford Cars 3D pretrained model, since the number

of training samples is relatively small. From the last two rows of Table 6.3 we can

see the effectiveness of transfer learning from Stanford Cars 3D to CompCars 3D.

We visualize the predicted poses for all three datasets in Figure 6.6. As shown

by the left part of Figure 6.6, our method is able to handle poses of various ori-

entations, scales and locations of the projection. On the other hand, as shown by

the right part of Figure 6.6, failure cases exists in our predictions including some

severe ones. There are rooms of improvement especially for the estimation of scale,

cases with large perspective distortion and some uncommon poses with few training

samples.

The promising baseline results suggest that we can accurately recover the full

perspective projection from a single image.
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Method Backbone Median ẽADD Mean ẽADD Accth=0.1 (%) FG Acc (%)

Baseline ResNet-50 0.1096 0.1884 45.96 -
w/ Location Field ResNet-50 0.1004 0.1219 49.74 -
Joint Prediction ResNet-50 0.1128 0.2081 40.93 90.87

Change Backbone ResNet-101 0.0917 0.1075 57.83 -

Table 6.4: Extended experimental results on Stanford Cars 3D

6.6 Extended Experiments

In this section we demonstrate our extended experiments on Stanford Cars 3D

dataset, including the usage of 3D location field (Section 6.5.2), joint fine-grained

recognition and pose estimation (Section 6.5.3) and change of convolution body.

Effect of Location Field: The experimental results on Stanford Cars 3D

with/without 3D location field is shown in the first two rows of Table 6.4. Note

that the field only participates in training and at test time the network input is still

a single image and the field is regressed. As can be seen, adding 3D location fields

improves all the metrics of pose estimation. The reason why it is more helpful in

reducing large pose error (Mean ẽADD) might be that the regressed field (14 × 14)

is at relatively low resolution.

Joint Prediction of 3D Poses and Fine-grained Labels: The result of joint

prediction is shown in the third row of Table 6.4, showing we achieve comparable

results in both tasks. As discussed in Section 6.5.3, the 3D pose branch and the

fine-grained recognition branch use separate late convolution layers (i.e., res-5, the

5th stage of ResNet). Sharing weights of these convolution layers between the two
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tasks leads to severely inferior performance.

Change of Convolution Body: Lastly, we show that our architecture is ap-

plicable to different base CNN architectures by replacing the ResNet-50 backbone

with ResNet-101. As shown in the last row of Table 6.4, with larger GPU memory

consumption and longer training time, ResNet-101 backbone gives better results.
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Chapter 7: Conclusion

Visual feature learning is at the core of various computer vision tasks, and dis-

criminativeness plays a major role for features for visual recognition. Fine-grained

recognition is a very good task to study discriminative feature learning since it re-

quires the recognition system to capture subtle intra-class differences. The research

in fine-grained recognition has shifted from multi-stage frameworks built upon CNN

features, to end-to-end CNN-based frameworks, to multi-task frameworks obtaining

more than category labels. We have proposed several approaches to address these

related problems.

(1) Our earlier work proposed a method based on sparse/low-rank analysis

which is able to capture subtle differences when the image instances are well-aligned.

(2) We proposed a mid-level patch-based approach for fine-grained recogni-

tion. We first introduce triplets of patches with two geometric constraints to im-

prove localizing patches, and automatically mine discriminative triplets to construct

mid-level representations for fine-grained recognition. Experimental results demon-

strated that our discriminative triplets mining framework performs very well on

both mid-scale and large-scale fine-grained recognition datasets, and outperformed

or obtained comparable results to the state-of-the-art at the time.
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(3) We proposed the Label Consistent Neural Network, a supervised feature

learning algorithm, by adding explicit supervision to late hidden layers. By intro-

ducing a discriminative representation error and combining it with the traditional

prediction error in neural networks, we achieved better classification performance

at the output layer, and more discriminative representations at the hidden layers.

Experimental results show that our approach operated at the state-of-the-art at the

time on several publicly available action and object recognition datasets. It leads

to faster convergence speed and works well when only limited video or image data

is presented. Our approach can be seamlessly combined with various network archi-

tectures. Future work includes applying the discriminative learned category-specific

representations to other computer vision tasks besides action and object recognition.

(4) We proposed an approach to fine-grained recognition based on learning a

discriminative filter bank within a CNN framework in an end-to-end fashion with-

out extra annotation. This is done via an asymmetric multi-stream network struc-

ture with convolutional layer supervision and non-random layer initialization. Our

approach learns high-quality discriminative patches. It obtained state-of-the-art

performance at the time on both rigid / non-rigid fine-grained datasets.

(5) We further study the problem of continuous 3D pose estimation for fine-

grained objects, with three major contributions. First, we collect a new fine-grained

3D dataset, which consists of more than 30,000 images with more than 300 different

categories. Second, we propose a new multi-task network structure for 3D pose

estimation. Third, we propose location field, a new efficient representation for 3D

shapes.
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Allen. Shape completion enabled robotic grasping. In IROS, 2017.

[153] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and
Raquel Urtasun. Monocular 3D object detection for autonomous driving. In
CVPR, 2016.

[154] Scott O Murray, Daniel Kersten, Bruno A Olshausen, Paul Schrater, and
David L Woods. Shape perception reduces activity in human primary visual
cortex. Proceedings of the National Academy of Sciences, 99(23):15164–15169,
2002.

[155] Derek Hoiem, Alexei A Efros, and Martial Hebert. Geometric context from a
single image. In ICCV, 2005.

[156] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classifica-
tion with deep convolutional neural networks. In NIPS, 2012.

139



[157] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
PoseCNN: A convolutional neural network for 6D object pose estimation in
cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

[158] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir
Navab. SSD-6D: Making RGB-based 3D detection and 6D pose estimation
great again. In CVPR, 2017.

[159] Siddharth Mahendran, Haider Ali, and Rene Vidal. Joint object category and
3d pose estimation from 2d images. arXiv preprint arXiv:1711.07426, 2017.

[160] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. ShapeNet: An information-rich 3D model repository. arXiv preprint
arXiv:1512.03012, 2015.

[161] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond PASCAL: A bench-
mark for 3D object detection in the wild. In WACV, 2014.

[162] Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su,
Roozbeh Mottaghi, Leonidas Guibas, and Silvio Savarese. ObjectNet3D: A
large scale database for 3D object recognition. In ECCV, 2016.

[163] Mustafa Ozuysal, Vincent Lepetit, and Pascal Fua. Pose estimation for cate-
gory specific multiview object localization. In CVPR, 2009.

[164] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and An-
drea Vedaldi. Fine-grained visual classification of aircraft. arXiv preprint
arXiv:1306.5151, 2013.

[165] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. A large-scale car
dataset for fine-grained categorization and verification. In CVPR, 2015.

[166] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
In ICCV, 2017.

[167] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge
Belongie. The Caltech-UCSD birds-200-2011 dataset. Technical Report CNS-
TR-2011-001, California Institute of Technology, 2011.

[168] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li.
Novel dataset for fine-grained image categorization: Stanford dogs. In Proc.
CVPR Workshop on Fine-Grained Visual Categorization (FGVC), volume 2,
page 1, 2011.

[169] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry,
Panos Ipeirotis, Pietro Perona, and Serge Belongie. Building a bird recog-
nition app and large scale dataset with citizen scientists: The fine print in
fine-grained dataset collection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 595–604, 2015.

140



[170] Jonathan Krause, Benjamin Sapp, Andrew Howard, Howard Zhou, Alexander
Toshev, Tom Duerig, James Philbin, and Li Fei-Fei. The unreasonable effec-
tiveness of noisy data for fine-grained recognition. In European Conference on
Computer Vision, pages 301–320. Springer, 2016.

[171] Grant Van Horn, Oisin Mac Aodha, Yang Song, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist challenge 2017 dataset.
arXiv preprint arXiv:1707.06642, 2017.

[172] Steve Branson, Grant Van Horn, Serge Belongie, and Pietro Perona. Bird
species categorization using pose normalized deep convolutional nets. arXiv
preprint arXiv:1406.2952, 2014.

[173] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear CNN
models for fine-grained visual recognition. In ICCV, 2015.

[174] Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. Part-based
R-CNNs for fine-grained category detection. In ECCV, 2014.

[175] Pierre Sermanet, Andrea Frome, and Esteban Real. Attention for fine-grained
categorization. arXiv preprint arXiv:1412.7054, 2014.

[176] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and
Zheng Zhang. The application of two-level attention models in deep convolu-
tional neural network for fine-grained image classification. In Computer Vision
and Pattern Recognition (CVPR), 2015 IEEE Conference on, pages 842–850.
IEEE, 2015.

[177] Jonathan Krause, Hailin Jin, Jianchao Yang, and Li Fei-Fei. Fine-grained
recognition without part annotations. In CVPR, 2015.

[178] Michael Stark, Jonathan Krause, Bojan Pepik, David Meger, James J Little,
Bernt Schiele, and Daphne Koller. Fine-grained categorization for 3d scene
understanding. International Journal of Robotics Research, 30(13):1543–1552,
2011.

[179] David G Lowe. Object recognition from local scale-invariant features. In
ICCV, 1999.

[180] Paul Wohlhart and Vincent Lepetit. Learning descriptors for object recog-
nition and 3d pose estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3109–3118, 2015.

[181] Abhishek Kar, Shubham Tulsiani, Joao Carreira, and Jitendra Malik.
Category-specific object reconstruction from a single image. In CVPR, 2015.

[182] J Krishna Murthy, GV Sai Krishna, Falak Chhaya, and K Madhava Krishna.
Reconstructing vehicles from a single image: Shape priors for road scene un-
derstanding. In ICRA, 2017.

141



[183] Shubham Tulsiani, Joao Carreira, and Jitendra Malik. Pose induction for
novel object categories. In Proceedings of the IEEE International Conference
on Computer Vision, pages 64–72, 2015.

[184] Shubham Tulsiani and Jitendra Malik. Viewpoints and keypoints. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1510–1519, 2015.

[185] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Konstantinos G Derpanis,
and Kostas Daniilidis. 6-DOF object pose from semantic keypoints. In ICRA,
pages 2011–2018, 2017.

[186] Alvaro Collet, Manuel Martinez, and Siddhartha S Srinivasa. The MOPED
framework: Object recognition and pose estimation for manipulation. The
International Journal of Robotics Research, 30(10):1284–1306, 2011.

[187] Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Reconstructing 3D
human pose from 2D image landmarks. In ECCV, 2012.

[188] Amir Ghodrati, Marco Pedersoli, and Tinne Tuytelaars. Is 2D information
enough for viewpoint estimation? In BMVC, 2014.

[189] Xiaowei Zhou, Spyridon Leonardos, Xiaoyan Hu, Kostas Daniilidis, et al.
3D shape estimation from 2D landmarks: A convex relaxation approach. In
CVPR, 2015.

[190] Andreas Doumanoglou, Vassileios Balntas, Rigas Kouskouridas, and Tae-
Kyun Kim. Siamese regression networks with efficient mid-level feature ex-
traction for 3d object pose estimation. arXiv preprint arXiv:1607.02257, 2016.

[191] Chunhui Gu and Xiaofeng Ren. Discriminative mixture-of-templates for view-
point classification. In ECCV, 2010.

[192] Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. Teaching 3D
geometry to deformable part models. In CVPR, 2012.

[193] Reyes Rios-Cabrera and Tinne Tuytelaars. Discriminatively trained templates
for 3D object detection: A real time scalable approach. In ICCV, 2013.

[194] Eric Brachmann, Frank Michel, Alexander Krull, Michael Ying Yang, Stefan
Gumhold, et al. Uncertainty-driven 6D pose estimation of objects and scenes
from a single rgb image. In CVPR, 2016.

[195] Zhe Cao, Yaser Sheikh, and Natasha Kholgade Banerjee. Real-time scalable
6DOF pose estimation for textureless objects. In ICRA, 2016.
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convolutional neural networks. In ICCV, volume 1, page 4, 2017.

[207] Linjie Yang, Jianzhuang Liu, and Xiaoou Tang. Object detection and view-
point estimation with auto-masking neural network. In ECCV, 2014.

[208] Patrick Poirson, Phil Ammirato, Cheng-Yang Fu, Wei Liu, Jana Kosecka, and
Alexander C Berg. Fast single shot detection and pose estimation. In 3DV,
2016.

[209] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchi-
cal multi-view RGB-D object dataset. In ICRA, 2011.

[210] Joseph J Lim, Hamed Pirsiavash, and Antonio Torralba. Parsing IKEA ob-
jects: Fine pose estimation. In ICCV, 2013.

143



[211] Kevin Matzen and Noah Snavely. Nyc3dcars: A dataset of 3d vehicles in
geographic context. In Computer Vision (ICCV), 2013 IEEE International
Conference on, pages 761–768. IEEE, 2013.

[212] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie
Shotton, and Carsten Rother. Learning 6D object pose estimation using 3D
object coordinates. In ECCV, 2014.

[213] Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, and Nassir
Navab. Deep learning of local RGB-D patches for 3D object detection and 6D
pose estimation. In ECCV, 2016.

[214] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker, Alberto
Rodriguez, and Jianxiong Xiao. Multi-view self-supervised deep learning for
6D pose estimation in the amazon picking challenge. In ICRA, 2017.

[215] Frank Michel, Alexander Kirillov, Eric Brachmann, Alexander Krull, Stefan
Gumhold, Bogdan Savchynskyy, and Carsten Rother. Global hypothesis gen-
eration for 6D object pose estimation. arXiv preprint, 2017.

[216] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3354–3361.
IEEE, 2012.

[217] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-
tional journal of computer vision, 88(2):303–338, 2010.

[218] Silvio Savarese and Li Fei-Fei. 3D generic object categorization, localization
and pose estimation. In ICCV, 2007.

[219] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Data-driven 3d
voxel patterns for object category recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1903–1911,
2015.

[220] Roozbeh Mottaghi, Yu Xiang, and Silvio Savarese. A coarse-to-fine model for
3D pose estimation and sub-category recognition. In CVPR, 2015.

[221] Hao Su, Min Sun, Li Fei-Fei, and Silvio Savarese. Learning a dense multi-view
representation for detection, viewpoint classification and synthesis of object
categories. In ICCV, 2009.

[222] Francisco Massa, Mathieu Aubry, and Renaud Marlet. Convolutional neural
networks for joint object detection and pose estimation: A comparative study.
arXiv preprint arXiv:1412.7190, 2014.

144



[223] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Košecká. 3D
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