803 research outputs found

    A First Look at the Crypto-Mining Malware Ecosystem: A Decade of Unrestricted Wealth

    Get PDF
    Illicit crypto-mining leverages resources stolen from victims to mine cryptocurrencies on behalf of criminals. While recent works have analyzed one side of this threat, i.e.: web-browser cryptojacking, only commercial reports have partially covered binary-based crypto-mining malware. In this paper, we conduct the largest measurement of crypto-mining malware to date, analyzing approximately 4.5 million malware samples (1.2 million malicious miners), over a period of twelve years from 2007 to 2019. Our analysis pipeline applies both static and dynamic analysis to extract information from the samples, such as wallet identifiers and mining pools. Together with OSINT data, this information is used to group samples into campaigns. We then analyze publicly-available payments sent to the wallets from mining-pools as a reward for mining, and estimate profits for the different campaigns. All this together is is done in a fully automated fashion, which enables us to leverage measurement-based findings of illicit crypto-mining at scale. Our profit analysis reveals campaigns with multi-million earnings, associating over 4.4% of Monero with illicit mining. We analyze the infrastructure related with the different campaigns, showing that a high proportion of this ecosystem is supported by underground economies such as Pay-Per-Install services. We also uncover novel techniques that allow criminals to run successful campaigns.Comment: A shorter version of this paper appears in the Proceedings of 19th ACM Internet Measurement Conference (IMC 2019). This is the full versio

    Graph Mining for Cybersecurity: A Survey

    Full text link
    The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society. Securing cyberspace has become an utmost concern for organizations and governments. Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities. In recent years, with the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance. It is imperative to summarize existing graph-based cybersecurity solutions to provide a guide for future studies. Therefore, as a key contribution of this paper, we provide a comprehensive review of graph mining for cybersecurity, including an overview of cybersecurity tasks, the typical graph mining techniques, and the general process of applying them to cybersecurity, as well as various solutions for different cybersecurity tasks. For each task, we probe into relevant methods and highlight the graph types, graph approaches, and task levels in their modeling. Furthermore, we collect open datasets and toolkits for graph-based cybersecurity. Finally, we outlook the potential directions of this field for future research

    Botnet Detection Using Graph Based Feature Clustering

    Get PDF
    Detecting botnets in a network is crucial because bot-activities impact numerous areas such as security, finance, health care, and law enforcement. Most existing rule and flow-based detection methods may not be capable of detecting bot-activities in an efficient manner. Hence, designing a robust botnet-detection method is of high significance. In this study, we propose a botnet-detection methodology based on graph-based features. Self-Organizing Map is applied to establish the clusters of nodes in the network based on these features. Our method is capable of isolating bots in small clusters while containing most normal nodes in the big-clusters. A filtering procedure is also developed to further enhance the algorithm efficiency by removing inactive nodes from bot detection. The methodology is verified using real-world CTU-13 and ISCX botnet datasets and benchmarked against classification-based detection methods. The results show that our proposed method can efficiently detect the bots despite their varying behaviors

    The Challenges in SDN/ML Based Network Security : A Survey

    Full text link
    Machine Learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking (SDN) emerge. Sitting at the application layer and communicating with the control layer, machine learning based SDN security models exercise a huge influence on the routing/switching of the entire SDN. Compromising the models is consequently a very desirable goal. Previous surveys have been done on either adversarial machine learning or the general vulnerabilities of SDNs but not both. Through examination of the latest ML-based SDN security applications and a good look at ML/SDN specific vulnerabilities accompanied by common attack methods on ML, this paper serves as a unique survey, making a case for more secure development processes of ML-based SDN security applications.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:1705.0056

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor
    • …
    corecore