506 research outputs found

    There are only two nonobtuse binary triangulations of the unit nn-cube

    Full text link
    Triangulations of the cube into a minimal number of simplices without additional vertices have been studied by several authors over the past decades. For 3≤n≤73\leq n\leq 7 this so-called simplexity of the unit cube InI^n is now known to be 5,16,67,308,14935,16,67,308,1493, respectively. In this paper, we study triangulations of InI^n with simplices that only have nonobtuse dihedral angles. A trivial example is the standard triangulation into n!n! simplices. In this paper we show that, surprisingly, for each n≥3n\geq 3 there is essentially only one other nonobtuse triangulation of InI^n, and give its explicit construction. The number of nonobtuse simplices in this triangulation is equal to the smallest integer larger than n!(e−2)n!({\rm e}-2).Comment: 17 pages, 7 figure

    Pre-processing for Triangulation of Probabilistic Networks

    Get PDF
    The currently most efficient algorithm for inference with a probabilistic network builds upon a triangulation of a network's graph. In this paper, we show that pre-processing can help in finding good triangulations forprobabilistic networks, that is, triangulations with a minimal maximum clique size. We provide a set of rules for stepwise reducing a graph, without losing optimality. This reduction allows us to solve the triangulation problem on a smaller graph. From the smaller graph's triangulation, a triangulation of the original graph is obtained by reversing the reduction steps. Our experimental results show that the graphs of some well-known real-life probabilistic networks can be triangulated optimally just by preprocessing; for other networks, huge reductions in their graph's size are obtained.Comment: Appears in Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI2001

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio

    Collapsibility of CAT(0) spaces

    Full text link
    Collapsibility is a combinatorial strengthening of contractibility. We relate this property to metric geometry by proving the collapsibility of any complex that is CAT(0) with a metric for which all vertex stars are convex. This strengthens and generalizes a result by Crowley. Further consequences of our work are: (1) All CAT(0) cube complexes are collapsible. (2) Any triangulated manifold admits a CAT(0) metric if and only if it admits collapsible triangulations. (3) All contractible d-manifolds (d≠4d \ne 4) admit collapsible CAT(0) triangulations. This discretizes a classical result by Ancel--Guilbault.Comment: 27 pages, 3 figures. The part on collapsibility of convex complexes has been removed and forms a new paper, called "Barycentric subdivisions of convexes complex are collapsible" (arXiv:1709.07930). The part on enumeration of manifolds has also been removed and forms now a third paper, called "A Cheeger-type exponential bound for the number of triangulated manifolds" (arXiv:1710.00130

    A Lower Bound for the Simplexity of then-Cube via Hyperbolic Volumes

    Get PDF
    AbstractLet T(n) denote the number of n -simplices in a minimum cardinality decomposition of the n -cube into n -simplices. For n≥ 1, we show that T(n) ≥H(n), where H(n) is the ratio of the hyperbolic volume of the ideal cube to the ideal regular simplex. H(n) ≥12·6n/2(n+ 1)−n+12n!. Also limn→∞n [H(n)]1/n≈ 0.9281. Explicit bounds for T(n) are tabulated for n≤ 10, and we mention some other results on hyperbolic volumes
    • …
    corecore