8,022 research outputs found

    Distributed Stabilization of Nonlinear Multi-Agent Systems

    Get PDF
    The study of multi-agent systems (MASs) is focused on systems in which many autonomous agents interact and operate within a limited communication environment. The general goal of the MAS research is to design interconnection control laws such that all the dynamic agents in the group are synchronized to a desired common trajectory by exchanging information with adjacent agents over certain constrained communication networks. Based on the review and modification of existing results concerning the consensus control of linear heterogeneous MASs in Moreau (2004) [21], Scardovi and Sepulchre (2009) [25], Wieland et al (2011) [30], and Alvergue et al. (2013) [1], this thesis investigates the distributed stabilization of the heterogeneous MAS, consisting of N different continuous-time nonlinear dynamic systems, under connected communication graphs. The conditions for a nonlinear dynamic agent to be feedback equivalent to a strictly passive system are derived along with the feedback law. A distributed stabilization control protocol using state feedback is then proposed under the idea of feedback connection of two passive systems. It proves to be sufficient for only one or a few agents to have access to the reference signal for the MAS to achieve stability, which lowers the communication overhead from the reference to different agents. The result can be interpreted as an extension of the stabilizing law for linear MASs introduced in [1], and considered as a fundamental preliminary for the consensus research for nonlinear MASs in the future

    Output Consensus Control for Heterogeneous Multi-Agent Systems

    Get PDF
    We study distributed output feedback control of a heterogeneous multi-agent system (MAS), consisting of N different continuous-time linear dynamical systems. For achieving output consensus, a virtual reference model is assumed to generate the desired trajectory for which the MAS is required to track and synchronize. A full information (FI) protocol is assumed for consensus control. This protocol includes information exchange with the feed-forward signals. In this dissertation we study two different kinds of consensus problems. First, we study the consensus control over the topology involving time delays and prove that consensus is independent of delay lengths. Second, we study the consensus under communication constraints. In contrast to the existing work, the reference trajectory is transmitted to only one or a few agents and no local reference models are employed in the feedback controllers thereby eliminating synchronization of the local reference models. Both significantly lower the communication overhead. In addition, our study is focused on the case when the available output measurements contain only relative information from the neighboring agents and reference signal. Conditions are derived for the existence of distributed output feedback control protocols, and solutions are proposed to synthesize the stabilizing and consensus control protocol over a given connected digraph. It is shown that the H-inf loop shaping and LQG/LTR techniques from robust control can be directly applied to design the consensus output feedback control protocol. The results in this dissertation complement the existing ones, and are illustrated by a numerical example. The MAS approach developed in this dissertation is then applied to the development of autonomous aircraft traffic control system. The development of such systems have already started to replace the current clearance-based operations to trajectory based operations. Such systems will help to reduce human errors, increase efficiency, provide safe flight path, and improve the performance of the future flight
    • …
    corecore