723 research outputs found

    Minimum guesswork discrimination between quantum states

    Full text link
    © Rinton Press. Error probability is a popular and well-studied optimization criterion in discriminating non-orthogonal quantum states. It captures the threat from an adversary who can only query the actual state once. However, when the adversary is able to use a brute-force strategy to query the state, discrimination measurement with minimum error probability does not necessarily minimize the number of queries to get the actual state. In light of this, we take Massey’s guesswork as the underlying optimization criterion and study the problem of minimum guesswork discrimination. We show that this problem can be reduced to a semidefinite programming problem. Necessary and sufficient conditions when a measurement achieves minimum guesswork are presented. We also reveal the relation between minimum guesswork and minimum error probability. We show that the two criteria generally disagree with each other, except for the special case with two states. Both upper and lower information-theoretic bounds on minimum guesswork are given. For geometrically uniform quantum states, we provide sufficient conditions when a measurement achieves minimum guesswork. Moreover, we give the necessary and sufficient condition under which making no measurement at all would be the optimal strategy

    Guesswork of a quantum ensemble

    Get PDF
    The guesswork of a quantum ensemble quantifies the minimum number of guesses needed in average to correctly guess an unknown message encoded in the states of the ensemble. Here, we derive sufficient conditions under which the computation of the minimum guesswork can be recast as a discrete problem. We show that such conditions are always satisfied for qubit ensembles with uniform probability distribution, thus settling the problem in that case. As applications, we compute the guesswork for any qubit regular-polygonal and regular-polyhedral ensembles.Comment: 4 pages, 1 figure, 1 tabl

    Generic local distinguishability and completely entangled subspaces

    Full text link
    A subspace of a multipartite Hilbert space is completely entangled if it contains no product states. Such subspaces can be large with a known maximum size, S, approaching the full dimension of the system, D. We show that almost all subspaces with dimension less than or equal to S are completely entangled, and then use this fact to prove that n random pure quantum states are unambiguously locally distinguishable if and only if n does not exceed D-S. This condition holds for almost all sets of states of all multipartite systems, and reveals something surprising. The criterion is identical for separable and for nonseparable states: entanglement makes no difference.Comment: 12 page

    Guessing Revisited: A Large Deviations Approach

    Full text link
    The problem of guessing a random string is revisited. A close relation between guessing and compression is first established. Then it is shown that if the sequence of distributions of the information spectrum satisfies the large deviation property with a certain rate function, then the limiting guessing exponent exists and is a scalar multiple of the Legendre-Fenchel dual of the rate function. Other sufficient conditions related to certain continuity properties of the information spectrum are briefly discussed. This approach highlights the importance of the information spectrum in determining the limiting guessing exponent. All known prior results are then re-derived as example applications of our unifying approach.Comment: 16 pages, to appear in IEEE Transaction on Information Theor

    Entropic Continuity Bounds & Eventually Entanglement-Breaking Channels

    Get PDF
    This thesis combines two parallel research directions: an exploration into the continuity properties of certain entropic quantities, and an investigation into a simple class of physical systems whose time evolution is given by the repeated application of a quantum channel. In the first part of the thesis, we present a general technique for establishing local and uniform continuity bounds for Schur concave functions; that is, for real-valued functions which are decreasing in the majorization pre-order. Continuity bounds provide a quantitative measure of robustness, addressing the following question: If there is some uncertainty or error in the input, how much uncertainty is there in the output? Our technique uses a particular relationship between majorization and the trace distance between quantum states (or total variation distance, in the case of probability distributions). Namely, the majorization pre-order attains a maximum and a minimum over ε-balls in this distance. By tracing the path of the majorization-minimizer as a function of the distance ε, we obtain the path of ``majorization flow’’. An analysis of the derivatives of Schur concave functions along this path immediately yields tight continuity bounds for such functions. In this way, we find a new proof of the Audenaert-Fannes continuity bound for the von Neumann entropy, and the necessary and sufficient conditions for its saturation, in a universal framework which extends to the other functions, including the Rényi and Tsallis entropies. In particular, we prove a novel uniform continuity bound for the α-Rényi entropy with α > 1 with much improved dependence on the dimension of the underlying system and the parameter α compared to previously known bounds. We show that this framework can also be used to provide continuity bounds for other Schur concave functions, such as the number of connected components of a certain random graph model as a function of the underlying probability distribution, and the number of distinct realizations of a random variable in some fixed number of independent trials as a function of the underlying probability mass function. The former has been used in modeling the spread of epidemics, while the latter has been studied in the context of estimating measures of biodiversity from observations; in these contexts, our continuity bounds provide quantitative estimates of robustness to noise or data collection errors. In the second part, we consider repeated interaction systems, in which a system of interest interacts with a sequence of probes, i.e. environmental systems, one at a time. The state of the system after each interaction is related to the state of the system before the interaction by the so-called reduced dynamics, which is described by the action of a quantum channel. When each probe and the way it interacts with the system is identical, the reduced dynamics at each step is identical. In this scenario, under the additional assumption that the reduced dynamics satisfies a faithfulness property, we characterize which repeated interaction systems break any initially-present entanglement between the system and an untouched reference, after finitely many steps. In this case, the reduced dynamics is said to be eventually entanglement-breaking. This investigation helps improve our understanding of which kinds of noisy time evolution destroy entanglement. When the probes and their interactions with the system are slowly-varying (i.e. adiabatic), we analyze the saturation of Landauer's bound, an inequality between the entropy change of the system and the energy change of the probes, in the limit in which the number of steps tends to infinity and both the difference between consecutive probes and the difference between their interactions vanishes. This analysis proceeds at a fine-grained level by means of a two-time measurement protocol, in which the energy of the probes is measured before and after each interaction. The quantities of interest are then studied as random variables on the space of outcomes of the energy measurements of the probes, providing a deeper insight into the interrelations between energy and entropy in this setting.Cantab Capital Institute for the Mathematics of Informatio

    Quantum surveillance and 'shared secrets'. A biometric step too far? CEPS Liberty and Security in Europe, July 2010

    Get PDF
    It is no longer sensible to regard biometrics as having neutral socio-economic, legal and political impacts. Newer generation biometrics are fluid and include behavioural and emotional data that can be combined with other data. Therefore, a range of issues needs to be reviewed in light of the increasing privatisation of ‘security’ that escapes effective, democratic parliamentary and regulatory control and oversight at national, international and EU levels, argues Juliet Lodge, Professor and co-Director of the Jean Monnet European Centre of Excellence at the University of Leeds, U
    corecore