3 research outputs found

    Minimum Convex Partitions and Maximum Empty Polytopes

    Full text link
    Let SS be a set of nn points in Rd\mathbb{R}^d. A Steiner convex partition is a tiling of conv(S){\rm conv}(S) with empty convex bodies. For every integer dd, we show that SS admits a Steiner convex partition with at most ⌈(n−1)/d⌉\lceil (n-1)/d\rceil tiles. This bound is the best possible for points in general position in the plane, and it is best possible apart from constant factors in every fixed dimension d≥3d\geq 3. We also give the first constant-factor approximation algorithm for computing a minimum Steiner convex partition of a planar point set in general position. Establishing a tight lower bound for the maximum volume of a tile in a Steiner convex partition of any nn points in the unit cube is equivalent to a famous problem of Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/n)\omega(1/n). Here we give a (1−ε)(1-\varepsilon)-approximation algorithm for computing the maximum volume of an empty convex body amidst nn given points in the dd-dimensional unit box [0,1]d[0,1]^d.Comment: 16 pages, 4 figures; revised write-up with some running times improve

    Minimum Convex Partition of a Constrained Point Set

    No full text
    A convex partition with respect to a point set S is a planar subdivision whose vertices are the points of S, where the boundary of the unbounded outer face is the boundary of the convex hull of S, and every bounded interior face is a convex polygon. A minimum convex partition with respect to S is a convex partition of S such that the number of convex polygons is minimised. In this paper, we will present a polynomial time algorithm to find a minimum convex partition with respect to a point set S where S is constrained to lie on the boundaries of a fixed number of nested convex hulls
    corecore