964 research outputs found

    Source Coding for Quasiarithmetic Penalties

    Full text link
    Huffman coding finds a prefix code that minimizes mean codeword length for a given probability distribution over a finite number of items. Campbell generalized the Huffman problem to a family of problems in which the goal is to minimize not mean codeword length but rather a generalized mean known as a quasiarithmetic or quasilinear mean. Such generalized means have a number of diverse applications, including applications in queueing. Several quasiarithmetic-mean problems have novel simple redundancy bounds in terms of a generalized entropy. A related property involves the existence of optimal codes: For ``well-behaved'' cost functions, optimal codes always exist for (possibly infinite-alphabet) sources having finite generalized entropy. Solving finite instances of such problems is done by generalizing an algorithm for finding length-limited binary codes to a new algorithm for finding optimal binary codes for any quasiarithmetic mean with a convex cost function. This algorithm can be performed using quadratic time and linear space, and can be extended to other penalty functions, some of which are solvable with similar space and time complexity, and others of which are solvable with slightly greater complexity. This reduces the computational complexity of a problem involving minimum delay in a queue, allows combinations of previously considered problems to be optimized, and greatly expands the space of problems solvable in quadratic time and linear space. The algorithm can be extended for purposes such as breaking ties among possibly different optimal codes, as with bottom-merge Huffman coding.Comment: 22 pages, 3 figures, submitted to IEEE Trans. Inform. Theory, revised per suggestions of reader

    Optimal Prefix Codes for Infinite Alphabets with Nonlinear Costs

    Full text link
    Let P={p(i)}P = \{p(i)\} be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial PP for which known methods find a source code that is optimal in the sense of minimizing expected codeword length. For some applications, however, a source code should instead minimize one of a family of nonlinear objective functions, β\beta-exponential means, those of the form logaip(i)an(i)\log_a \sum_i p(i) a^{n(i)}, where n(i)n(i) is the length of the iith codeword and aa is a positive constant. Applications of such minimizations include a novel problem of maximizing the chance of message receipt in single-shot communications (a<1a<1) and a previously known problem of minimizing the chance of buffer overflow in a queueing system (a>1a>1). This paper introduces methods for finding codes optimal for such exponential means. One method applies to geometric distributions, while another applies to distributions with lighter tails. The latter algorithm is applied to Poisson distributions and both are extended to alphabetic codes, as well as to minimizing maximum pointwise redundancy. The aforementioned application of minimizing the chance of buffer overflow is also considered.Comment: 14 pages, 6 figures, accepted to IEEE Trans. Inform. Theor

    The Rényi Redundancy of Generalized Huffman Codes

    Get PDF
    Huffman's algorithm gives optimal codes, as measured by average codeword length, and the redundancy can be measured as the difference between the average codeword length and Shannon's entropy. If the objective function is replaced by an exponentially weighted average, then a simple modification of Huffman's algorithm gives optimal codes. The redundancy can now be measured as the difference between this new average and A. Renyi's (1961) generalization of Shannon's entropy. By decreasing some of the codeword lengths in a Shannon code, the upper bound on the redundancy given in the standard proof of the noiseless source coding theorem is improved. The lower bound is improved by randomizing between codeword lengths, allowing linear programming techniques to be used on an integer programming problem. These bounds are shown to be asymptotically equal. The results are generalized to the Renyi case and are related to R.G. Gallager's (1978) bound on the redundancy of Huffman codes

    Lower Bounds on the Redundancy of Huffman Codes with Known and Unknown Probabilities

    Full text link
    In this paper we provide a method to obtain tight lower bounds on the minimum redundancy achievable by a Huffman code when the probability distribution underlying an alphabet is only partially known. In particular, we address the case where the occurrence probabilities are unknown for some of the symbols in an alphabet. Bounds can be obtained for alphabets of a given size, for alphabets of up to a given size, and for alphabets of arbitrary size. The method operates on a Computer Algebra System, yielding closed-form numbers for all results. Finally, we show the potential of the proposed method to shed some light on the structure of the minimum redundancy achievable by the Huffman code
    corecore